On a generalized p-adic Gibbs measure for Ising model on trees
Tóm tắt
Từ khóa
Tài liệu tham khảo
S. Albeverio and W. Karwowski, “A random walk on p-adics the generators and its spectrum,” Stoch. Proc. Appl. 53, 1–22 (1994).
P. M. Bleher, J. Ruiz and V. A. Zagrebnov, “On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice,” J. Stat. Phys. 79, 473–482 (1995).
N. N. Ganikhodjayev and U. A. Rozikov, “Description of periodic extreme Gibbs measures of some lattice model on the Cayley tree,” Theor. Math. Phys. 111, 480–486 (1997).
N. N. Ganikhodjayev, F. M. Mukhamedov and U. A. Rozikov, “Phase transitions in the Ising model on Z over the p-adic numbers,” UzbekMath. J. 4, 23–29 (1998).
D. Gandolfo, U. A. Rozikov and J. Ruiz, “On p-adic Gibbs measures for Hard Core model on a Cayley tree,” Markov Proc. Related Fields 18, 701–721 (2012).
H.-O. Georgii, GibbsMeasures and Phase Transitions (W. de Gruyter, Berlin, 1988).
O. N. Khakimov, “On p-Adic Gibbs measures for Ising model with four competing interactions,” p-Adic Numbers Ultrametric Anal. Appl. 5(3), 194–203 (2013).
M. Khamraev, F. Mukhamedov and U. Rozikov, “On the uniqueness of Gibbs measures for p-adic nonhomogeneous λ-model on the Cayley tree,” Lett.Math. Phys. 70, 17–28 (2004).
M. Khamraev and F. Mukhamedov, “On p-adic λ-model on the Cayley tree,” J. Math. Phys. 45(11), 4025–4034 (2004).
A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer, Dordrecht, 1997).
A. Yu. Khrennikov, F. M. Mukhamedov and J. F. F. Mendes, “On p-adic Gibbs measures of the countable state Potts model on the Cayley tree,” Nonlinearity 20, 2923–2937 (2007).
A. Yu. Khrennikov and F. M. Mukhamedov, “On uniqueness of Gibbs measure for p-adic countable state Potts model on the Cayley tree,” Nonlin. Anal. Theor. Meth. Appl. 71, 5327–5331 (2009).
F. M. Mukhamedov and U. A. Rozikov, “On Gibbs measures of p-adic Potts model on the Cayley tree,” Indag. Math. 15(1), 85–100 (2004).
F. M. Mukhamedov, “On dynamical systems and phase transitions for q + 1-state p-adic Potts model on the Cayley tree,” Math. Phys. Anal. Geom. 16, 49–87 (2013).
F. M. Mukhamedov, “On p-adic quasi Gibbs measures for q + 1-state Potts model on the Cayley tree,” p-Adic Numbers Ultrametric Anal. Appl. 2, 241–251 (2010).
F. Mukhamedov, “Existence of p-adic quasi Gibbs measure for countable state Potts model on the Cayley tree,” J. Inequal. Apll. Geom. 104, (2012).
F. Mukhamedov and H. Akin, “Phase transitions for p-adic Potts model on the Cayley tree of order three,” J. Stat. Mech., P07014 (2013).
F. Mukhamedov, “On strong phase transitions for one dimensional countable state p-adic Potts model,” J. Stat. Mech., P01007 (2014).
U. A. Rozikov, “Representability of trees and some of their applications,” Math. Notes 72(4), 479–488 (2002).
W. H. Schikhof, Ultrametric Calculus (Cambridge Univ. Press, Cambridge, 1984).