On a generalization of a relatively nonexpansive mapping and best proximity pair

Karim Chaira1, Belkassem Seddoug1
1Department of Mathematics, CRMEF Rabat-Salé-Kénitra, Avenue Allal El Fassi, B.P 6210, Rabat, 10000, Morocco

Tóm tắt

AbstractLet A and B be two nonempty subsets of a normed space X, and let $T: A \cup B \to A \cup B$ T : A B A B be a cyclic (resp., noncyclic) mapping. The objective of this paper is to establish weak conditions on T that ensure its relative nonexpansiveness.The idea is to recover the results mentioned in two papers by Matkowski (Banach J. Math. Anal. 2:237–244, 2007; J. Fixed Point Theory Appl. 24:70, 2022), by replacing the nonexpansive mapping $f: C \to C$ f : C C with a cyclic (resp., noncyclic) relatively nonexpansive mapping to obtain the best proximity pair. Additionally, we provide an application to a functional equation.

Từ khóa


Tài liệu tham khảo

Browder, F.E.: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041–1044 (1965)

Carathéodory, K.: Vorlesungen über reelle Funktionen, Vieweg+Teubner, Leipzig, Berlin (1927)

Chaira, K., Dovgoshey, O., Lazaiz, S.: Best proximity points in ultrametric spaces. P-Adic Numb. Ultrametr. Anal. Appl. 13(4), 255–265 (2021)

Clarkson, A.: Uniformly convex spaces. Trans. Am. Math. Soc. 40, 396–414 (1936)

Eldred, A.A., Kirk, W.A., Veeramani, P.: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171, 283–293 (2005)

Eldred, A.A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006)

Göhde, D.: Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 28, 251–258 (1965)

Kirk, W.A.: A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 72, 1004–1006 (1965)

Matkowski, J.: Remarks on Lipschitzian mappings and some fixed point theorems. Banach J. Math. Anal. 2, 237–244 (2007)

Matkowski, J.: A refinement of the Browder–Göhde–Kirk fixed point theorem and some applications. J. Fixed Point Theory Appl. 24, 70 (2022). https://doi.org/10.1007/s11784-022-00985-2

Mongkolkeha, C., Kumam, P.: Best proximity point theorems for generalized cyclic contractions in ordered metric spaces. J. Optim. Theory Appl. (2012). https://doi.org/10.1007/s10957-012-9991-y

Sadiq Basha, S., Veeramani, P.: Best approximations and best proximity pairs. Acta Sci. Math. 63, 289–300 (1997)

Sadiq Basha, S., Veeramani, P., Pai, D.V.: Best proximity pair theorems. Indian J. Pure Appl. Math. 32, 1237–1246 (2001)

Suzuki, T., Kikkawa, M., Vetro, C.: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918–2926 (2009)