On a generalization of a relatively nonexpansive mapping and best proximity pair
Tóm tắt
Từ khóa
Tài liệu tham khảo
Browder, F.E.: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041–1044 (1965)
Chaira, K., Dovgoshey, O., Lazaiz, S.: Best proximity points in ultrametric spaces. P-Adic Numb. Ultrametr. Anal. Appl. 13(4), 255–265 (2021)
Eldred, A.A., Kirk, W.A., Veeramani, P.: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171, 283–293 (2005)
Eldred, A.A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006)
Kirk, W.A.: A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 72, 1004–1006 (1965)
Matkowski, J.: Remarks on Lipschitzian mappings and some fixed point theorems. Banach J. Math. Anal. 2, 237–244 (2007)
Matkowski, J.: A refinement of the Browder–Göhde–Kirk fixed point theorem and some applications. J. Fixed Point Theory Appl. 24, 70 (2022). https://doi.org/10.1007/s11784-022-00985-2
Mongkolkeha, C., Kumam, P.: Best proximity point theorems for generalized cyclic contractions in ordered metric spaces. J. Optim. Theory Appl. (2012). https://doi.org/10.1007/s10957-012-9991-y
Sadiq Basha, S., Veeramani, P.: Best approximations and best proximity pairs. Acta Sci. Math. 63, 289–300 (1997)
Sadiq Basha, S., Veeramani, P., Pai, D.V.: Best proximity pair theorems. Indian J. Pure Appl. Math. 32, 1237–1246 (2001)