On a constant curvature statistical manifold

Shimpei Kobayashi1, Yu Ohno1
1Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amari, S.: Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics, vol. 28. Springer, Berlin (1985)

Amari, S., Nagaoka, H.: Method of Information Geometry. Amer. Math. Soc. Oxford Univ. Press, Oxford (2000)

Bokan, N., Nomizu, K., Simon, U.: Affine hypersurfaces with parallel cubic forms. Tohoku Math. J. (2) 42(1), 101–108 (1990)

Calin, O., Udrişte, C.: Geometric Modeling in Probability and Statistics. Springer, Cham (2014)

Eisenhart, L.P.: Non-Riemannian Geometry, Amer. Math. Soc. Colloq. Publ. 8 (1927)

Furuhata, H., Inoguchi, J., Kobayashi, S.-P.: A characterization of the alpha-connections on the statistical manifold of normal distributions. Inf. Geom. 4(1), 1–12 (2020)

Globke, W., Quiroga-Barranco, R.: Information geometry and asymptotic geodesics on the space of normal distributions. Inf. Geom. 4(1), 131–153 (2021)

Goldman, W.M.: Convex real projective structures on compact surfaces. J. Differ. Geom. 31(3), 791–845 (1990)

Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry II, Interscience Tracts in Pure and Applied Math, vol. 15. Interscience Publishers, Geneva (1969)

Kobayashi, S.P., Ohno, Y.: On a constant curvature statistical manifold (2020). PreprintarXiv:2008.13394

Kurose, T.: Dual connections and affine geometry. Math. Z. 203(1), 115–121 (1990)

Labourie, F.: Flat projective structures on surfaces and cubic holomorphic differentials. Pure Appl. Math. Q. 3, 1057–1099 (2007)

Lauritzen, S.L.: Statistical manifolds. In: Differential Geometry in Statistical Inference, IMS Lecture Notes: Monograph Series, vol. 10. Institute of Mathematical Statistics, Hayward, California, pp. 163–216 (1987)

Loftin, J.C.: Affine spheres and convex $$\mathbb{RP}^n$$-manifolds. Am. J. Math. 3(2), 255–274 (2001)

Mikeš, J., Stepanova, E.: A five-dimensional Riemannian manifold with an irreducible $${\rm SO}(3)$$-structure as a model of abstract statistical manifold. Ann. Glob. Anal. Geom. 45(2), 111–128 (2014)

Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge Univ, Oxford (1994)

Opozda, B.: Bochner’s technique for statistical structures. Ann. Glob. Anal. Geom. 48, 357–395 (2015)

Opozda, B.: A sectional curvature for statistical structures. Linear Algebra Appl. 497, 134–161 (2016)

Rylov, A.: Constant curvature connections on statistical models. In:Information Geometry and its Applications, Springer Proc. Math. Stat., vol. 252. Springer, Cham, pp. 349–361 (2018)

Simon, U., Schwenk-Schellschmidt, A., Viesel, H.: Introduction to the affine differential geometry of hypersurfaces, Lecture Notes of the Science University of Tokyo, (1991)

Vinberg, E.B.:The theory of convex homogeneous cones, Translations Moscow Math. Soc., 340–403 (1963)