On a conjugacy problem in billiard dynamics

Dmitry Treschev1
1Steklov Mathematical Institute of Russian Academy of Sciences , Moscow Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

M.-C. Arnaud, “C 1-generic billiard tables have a dense set of periodic points,” Regular Chaotic Dyn. 18(6), 697–702 (2013).

G. D. Birkhoff, Dynamical Systems (Am. Math. Soc., New York, 1927), Colloq. Publ. 9.

S. V. Bolotin, “Integrable Birkhoff billiards,” Vestn. Mosk. Univ., Ser 1: Mat. Mekh., No. 2, 33–36 (1990) [Moscow Univ. Mech. Bull. 45 (2), 10–13 (1990)].

S. V. Bolotin, “Integrable billiards on surfaces of constant curvature,” Mat. Zametki 51(2), 20–28 (1992) [Math. Notes 51, 117–123 (1992)].

V. V. Kozlov and D. V. Treshchev, Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts (Am. Math. Soc., Providence, RI, 1991), Transl. Math. Monogr. 89.

D. Treschev, “Billiard map and rigid rotation,” Physica D 255, 31–34 (2013).

H. Whitney, “Analytic extensions of differentiable functions defined in closed sets,” Trans. Am. Math. Soc. 36, 63–89 (1934).