Về một lớp phương trình Volterra tích phân vi diệt trễ

Advances in Operator Theory - Tập 8 - Trang 1-16 - 2023
Fouad Maragh1
1LMA Laboratory, University of Ibn Zohr, Agadir, Morocco

Tóm tắt

Trong bài báo này, chúng tôi xem xét lớp phương trình Volterra tích phân vi diệt trễ sau đây trong không gian Banach $$\begin{aligned} \dot{x}\left( t\right) =Ax\left( t\right) +\int _{0}^{t}a\left( t-\tau \right) \mathcal {F}x\left( \tau \right) d\tau +\int _{0}^{t}b\left( t-\tau \right) Lx_{\tau }d\tau , \end{aligned}$$ trong đó tham số trễ $$Lx_{\tau }$$ của phương trình này được đưa vào tích phân như một tích chập với hạt nhân vô hướng. Bằng cách sử dụng lý thuyết các nhóm bán, chúng tôi thiết lập tính khả thi tốt của bài toán đã xem xét bằng cách sử dụng nhiễu loạn Miyadera–Voigt và cũng nghiên cứu phân tích phổ của một bài toán Cauchy trừu tượng liên quan.

Từ khóa

#phương trình vi diệt #phương trình Volterra #không gian Banach #lý thuyết nhóm bán #phân tích phổ

Tài liệu tham khảo

Bátkai, A., Piazzera, S.: Semigroups and linear partial differential equations with delay. J. Math. Anal. Appl. 264(1), 1–20 (2001) Bátkai, A., Piazzera, S.: Semigroups for Delay Equations. AK Peters/CRC Press, Natick (2005) Calzadillas, S., Lizama, C.: Bounded mild solutions of perturbed volterra equations with infinite delay. Nonlinear Anal. Theory Methods Appl. 72(11), 3976–3983 (2010) Chen, G., Grimmer, R.: Integral equations as evolution equations. J. Diff. Equ. 45, 53–74 (1982) Clément, P., Da Prato, G.: Existence and regularity results for an integral equation with infinite delay in a Banach space. Integral Equ. Oper. Theory 11, 480–500 (1988) Curtain, R.F., Zwart, H.: Introduction to Infinite-Dimensional Linear Systems, TMA21. Springer-Verlag, New York (1995) Desch, W., Schappacher, W.: A semigroup approach to integrodifferential equations in Banach spaces. J. Integral Equ. 10, 99–110 (1985) Engel, K.J., Nagel, R.: One-parameter Semigroups for Linear Evolution Equations. Berlin, Heidelberg, New York (2000) Enright, W.H., Hu, M.: Continuous Runge-Kutta methods for neutral volterra integro-differential equations with delay. Appl. Numer. Math. 24(2–3), 175–190 (1997) Hadd, S., Idrissi, A., Rhandi, A.: The regular linear systems associated with the shift semigroups and application to control linear systems with delay. Math. Control Sign. Syst. 18, 272–291 (2006) Hale, J.K.: Functional differential equations. In: Analytic Theory of Differential Equations, pp. 9–22. Springer (1971) Hale, J.K.: Theory of Functional Differential Equations, vol. 3. Springer Science & Business Media, Berlin (2012) Jung, M.: Admissibility of control operators for solution families to Volterra integral equations. SIAM J. Control. Optim. 38, 1323–1333 (2000) Kaiser, C.: Integrated semigroups and linear partial differential equations with delay. J. Math. Anal. Appl. 292(2), 328–339 (2004) Koto, T.: Stability of Runge-Kutta methods for delay integro-differential equations. J. Comput. Appl. Math. 145(2), 483–492 (2002) Koto, T.: Stability of \(\theta \)-methods for delay integro-differential equations. J. Comput. Appl. Math. 161(2), 393–404 (2003) Liu, J.H.: Resolvent operators and weak solutions of integrodifferential equations. Diff. lntegral Equ. 7, 523–534 (1994) Lizama, C., N’Guérékata, G.M.: Bounded mild solutions for semilinear integro differential equations in banach spaces. Integral Equ. Oper. Theory 68(2), 207–227 (2010) Miller, R.K.: Volterra integral equations in a Banach space. Funkc. Ekvac 18, 163–193 (1975) Miyadera, I.: On perturbation theory for semi-groups of operators. Tohoku Math. J. Second Ser. 18(3), 299–310 (1966) Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44. New York (1983) Pritchard, A.J., Salamon, D.: The linear quadratic control problem for retarded systems with delays in control and observation. IMA J. Math. Control Inform. 2, 335–362 (1985) Prüss, J.: Evolutionary Integral Equations and Applications. Birkhäuser-Verlag, Basel (1993) Rhandi, A.: Extrapolation methods to solve non-autonomous retarded partial differential equations. Stud. Math. 126(3), 219–233 (1997) Salamon, D.: Infinite-dimensional linear system with unbounded control and observation: a functional analytic approach. Trans. Am. Math. Soc. 300, 383–431 (1987) Schnaubelt, R.: Feedbacks for nonautonomous regular linear systems. SIAM J. Control Optim. 41, 1141–1165 (2002) Staffans, O.: Well-Posed Linear Systems. Cambridge University Press, Cambridge (2005) Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Springer, Berlin (2009) Tunç, C., Mohammed, S.A.: On the stability and uniform stability of retarded integro-differential equations. Alex. Eng. J. 57(4), 3501–3507 (2018) Voigt, J.: On the perturbation theorem for strongly continuous semigroups. Math. Ann. 229, 163–171 (1977) Webb, G.F.: Autonomous nonlinear functional differential equations and nonlinear semigroups. J. Math. Anal. Appl. 46(1), 1–12 (1974) Weiss, G.: Admissible observation operators for linear semigroups. Isr. J. Math. 65, 17–43 (1989) Wu, J.: Theory and Applications of Partial Functional Differential Equations, vol. 119. Springer Science & Business Media, Berlin (1996) Xu, Y., Zhao, J.J.: Stability of Runge-Kutta methods for neutral delay-integro-differential-algebraic system. Math. Comput. Simul. 79(3), 571–583 (2008)