On a class of permutation trinomials in characteristic 2
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bartoli, D.: On a conjecture about a class of permutation trinomials. Finite Fields Appl. 52, 30–50 (2018)
Gupta, R., Sharma, R.K.: Some new classes of permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 41, 89–96 (2016)
Hou, X.: A survey of permutation binomials and trinomials over finite fields. In: Proceedings of the 11th International Conference on Finite Fields and Their Applications, Magdeburg, Germany, 2013, Contemporary Mathematics, vol. 632, pp. 177–191 (2015)
Hou, X.: Permutation polynomials over finite fields — a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)
Hou, X.: Determination of a type of permutation trinomials over finite fields, II. Finite Fields Appl. 35, 16–35 (2015)
Li, N., Helleseth, T.: Several classes of permutation trinomials from Niho exponents. Cryptogr. Commun. 9, 693–705 (2017)
Li, K., Qu, L., Chen, X.: New classes of permutation binomials and permutation trinomials over finite fields. Finite Fields Appl. 43, 69–85 (2017)
Park, Y.H., Lee, J.B.: Permutation polynomials and group permutation polynomials. Bull. Austral. Math. Soc. 63, 67–74 (2001)
Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (1993)
Tu, Z., Zeng, X., Li, C., Helleseth, T.: A class of new permutation trinomials. Finite Fields Appl. 50, 178–195 (2018)
Wang, Q.: Cyclotomic mapping permutation polynomials over finite fields. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) Sequences, Subsequences, and Consequences, Lecture Notes in Comput. Sci., vol. 4893, pp 119–128. Springer, Berlin (2007)
Wu, D., Yuan, P., Ding, C., Ma, Y.: Permutation trinomials over F 2 m $\mathbb {F}_{2^{m}}$ . Finite Fields Appl. 46, 38–56 (2017)
Zha, Z., Hu, L., Fan, S.: Further results on permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 45, 43–52 (2017)
Zieve, M.E.: On some permutation polynomials over F q $\mathbb {F}_{q}$ of the form xrh(x(q− 1)/d). Proc. Amer. Math. Soc. 137, 2209–2216 (2009)
Zieve, M.E.: Permutation polynomials on F q $\mathbb {F}_{q}$ induced from Rédei function bijections on subgroups of F q ∗ $\mathbb {F}_{q}^{*}$ . arXiv: 1310.0776