Về một bất đẳng thức của Cocke và Venkataraman
Tóm tắt
Cho
Từ khóa
Tài liệu tham khảo
Benesh, B., Cocke, W.: On the number of elements in a group whose order is divisible by a common natural number. Math. Proc. R. Ir. Acad. 120A, 1–5 (2020)
Chen, G., Shi, W.: Finite groups with 30 elements of maximal order. Appl. Categ. Struct. 16, 239–247 (2008)
Cocke, W., Venkataraman, G.: On the number of elements of maximal order in a group. Am. Math. Mon. 126, 66–69 (2019)
Han, Z., Song, R.: Finite groups having exactly 22 elements of maximal order. Int. J. Algebra 8, 353–355 (2014)
Han, Z., Song, R.: Finite groups having exactly 28 elements of maximal order. Int. J. Algebra 8, 563–568 (2014)
Han, Z., Song, R.: Finite groups having exactly 44 elements of maximal order. Adv. Math. (China) 45, 61–66 (2016)
Han, Z., Xie, L., Guo, P.: Finite groups which have 20 elements of maximal order. Math. Probl. Eng. 2020, 5 (2020)
Han, Z., Zhang, L.: Finite groups having exactly 42 elements of maximal order. Ital. J. Pure Appl. Math. 351–354,(2017)
Jiang, Q., Shao, C.: Finite groups with 24 elements of maximal order. Front. Math. China 5, 665–678 (2010)
Jiang, Y.Y.: Finite groups with 44 or 52 maximal-order elements. J. Hebei Univ. Nat. Sci. 24, 113–116 (2004)
The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.11.0 (2020). http://www.gap-system.org
Wall, C.T.C.: On groups consisting mostly of involutions. Proc. Camb. Philos. Soc. 67, 251–262 (1970)
Yang, C.: Finite groups with various numbers of elements of maximum order. Chin. Ann. Math. Ser. A 14, 561–567 (1993)