Về hệ Timoshenko với sự kết hợp nhiệt trên cả mômen uốn và lực cắt

Journal of Evolution Equations - Tập 20 - Trang 295-320 - 2019
M. O. Alves1, A. H. Caixeta1, M. A. Jorge Silva1, J. H. Rodrigues1, D. S. Almeida Júnior2
1Department of Mathematics, State University of Londrina, Londrina, Brazil
2Department of Mathematics, Federal University of Pará, Belém, Brazil

Tóm tắt

Hệ Timoshenko là một mô hình rất nổi tiếng cho sự rung động của các thanh đàn hồi, được xác định bởi sự kết hợp của hai lực tác động lên hệ thống: lực cắt và mômen uốn. Trong trường hợp không đồng nhất về nhiệt độ, tức là khi mô hình chịu ảnh hưởng của sự biến đổi nhiệt độ, chúng tôi xem xét ảnh hưởng nhiệt tác động lên toàn bộ hệ thống, cụ thể là chúng tôi đề xuất một hệ Timoshenko thermoelastic mới bằng cách kết hợp các định luật nhiệt trên cả lực cắt và mômen uốn theo định luật Fourier. Sau đó, chúng tôi chỉ ra rằng một hệ hoàn toàn thermoelastic như vậy là ổn định theo cấp số nhân mà không cần giả định tốc độ sóng bằng nhau và cũng không phụ thuộc vào bất kỳ điều kiện biên nào.

Từ khóa

#hệ Timoshenko #mômen uốn #lực cắt #ổn định cấp số nhân #ảnh hưởng nhiệt #tính đàn hồi nhiệt

Tài liệu tham khảo

D. S. Almeida Júnior, M. L. Santos and J. E. Muñoz Rivera, Stability to weakly dissipative Timoshenko systems, Math. Methods Appl. Sci. 36 (2013) 1965–1976. D. S. Almeida Júnior, M. L. Santos and J. E. Muñoz Rivera, Stability to 1-D thermoelastic Timoshenko beam acting on shear force, Z. Angew. Math. Phys. 65 (2014), no. 6, 1233–1249. M. S. Alves, M. A. Jorge Silva, T. F Ma and J. E. Muñoz Rivera, Invariance of decay rate with respect to boundary conditions in thermoelastic Timoshenko systems, Z. Angew. Math. Phys. (2016) 67: 70. M. S. Alves, M. A. Jorge Silva, T. F. Ma and J. E. Muñoz Rivera, Non-homogeneous thermoelastic Timoshenko systems, Bull. Braz. Math. Soc. (N.S.) 48 (2017), no. 3, 461–484. F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Differential Equations 194 (2003) 82–115. F. Ammar-Khodja, S. Kerbal and A. Soufyane, Stabilization of the nonuniform Timoshenko beam, J. Math. Anal. Appl. 327 (2007) 525–538. L. C. Cardozo, M. A. Jorge Silva, T. F. Ma, J. E. Muñoz Rivera, Stability of Timoshenko systems with thermal coupling on the bending moment, Mathematische Nachrichten, 2019. (accepted for publication - to appear) M. M. Cavalcanti, V. N. Domingos Cavalcanti, F. A. Falcão Nascimento, I. Lasiecka and J. H. Rodrigues, Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping, Z. Angew. Math. Phys. 65 (2014) 1189–1206. M. Conti, F. Dell’Oro, V. Pata, Timoshenko systems with fading memory, Dyn. Partial Differ. Equ. 10 (2013) 367–377. C. M. Dafermos, On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity, Arch. Rat. Mech. Anal. 29 (1968), 241–271. F. Dell’Oro, Asymptotic stability of thermoelastic systems of Bresse type, J. Differential Equations 258 (2015) 3902–3927 F. Dell’Oro and V. Pata, On the stability of Timoshenko systems with Gurtin–Pipkin thermal law, J. Differential Equations 257 (2014) 523–548. A. D. Drozdov, V. B. Kolmanovskii, Stability in Viscoelasticity, Amsterdam: North-Holland, 1994. K. Engel and R. Nagel, A short Course on Operator Semigroups. Springer, New York, 2006. L. H. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math. 75 (2010), no. 6, 881–904. L. H. Fatori, J. E. Muñoz Rivera and R. N. Monteiro, Energy decay to Timoshenko’s system with thermoelasticity of type III, Asymptot. Anal. 86 (2014) 227–247. H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal. 194 (2009) 221–251. L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc. 236 (1978) 385–394. A. Guesmia and S. A Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Methods Appl. Sci. 32 (2009) 2102–2122. A. Guesmia, S. A. Messaoudi and A. Wehbe, Uniform decay in mildly damped Timoshenko systems with non-equal wave speed propagation, Dynam. Systems Appl. 21 (2012) 133–146. J. E. Lagnese, G. Leugering, E. J. P. G. Schmidt, Modelling of dynamic networks of thin thermoelastic beams, Math. Methods Appl. Sci. 16 (1993), no. 5, 327–358. J. E. Lagnese, G. Leugering, E. J. P. G. Schmidt, Modeling, analysis and control of dynamic elastic multi-link structures. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1994. J. E. Lagnese and J. L. Lions, Modelling, Analysis and Control of Thin Plates, in: Recherches en Mathématiques Appliquées, vol. 6, Mason, Paris, 1988. F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations 1 (1985) 43–56. J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim. 25 (1987) 1417–1429. Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys. 60 (2009), no. 1, 54–69. Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC, Boca Raton, 1999. N. Mori, J. Xu, S. Kawashima, Global existence and optimal decay rates for the Timoshenko system: the case of equal wave speeds, J. Differential Equations 258 (2015) 1494–1518. J. E. Muñoz Rivera, Energy decay rate in linear thermoelasticity, Funkcial. Ekvac. 35 (1992), 19–30. J. E. Muñoz Rivera and A. I. Ávila, Rates of decay to non homogeneous Timoshenko model with tip body, J. Differential Equations 258 (2015), no. 10, 3468–3490. J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems – global existence and exponential stability, J. Math. Anal. Appl. 276 (2002) 248–278. J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete Contin. Dyn. Syst. B 9 (2003) 1625–1639. P. Olsson and G. Kristensson, Wave splitting of the Timoshenko beam equation in the time domain, Z. Angew. Math. Phys. 45 (1994) 866-881. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983. J. Prüss, On the spectrum of \(C_0\)-semigroups, Trans. Amer. Math. Soc. 284 (1984) 847–857. J. Prüss, Evolutionary integral equations and applications. Monographs in Mathematics, 87. Birkhäuser Verlag, Basel, 1993. R. Quintanilla and R. Racke, Stability for thermoelastic plates with two temperatures, Discrete Contin. Dyn. Syst. 37 (2017), no. 12, 6333–6352. C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Lett. 18 (2005) 535–541. B. Said-Houari and A. Kasimov, Damping by heat conduction in the Timoshenko system: Fourier and Cattaneo are the same, J. Differential Equations 255 (2013) 611–632. M. L. Santos, D. S. Almeida Júnior, J. E. Muñoz Rivera, The stability number of the Timoshenko system with second sound, J. Differential Equations 253 (2012) 2715–2733. M. L. Santos, D. S. Almeida Júnior, J. E. Muñoz Rivera, Bresse system with Fourier law on shear force, Advances in Differential Equations 21 (2016), 55–84. M. L. Santos, D. S. Almeida Júnior, J. H. Rodrigues and F. A. Falcão Nascimento, Decay rates for Timoshenko system with nonlinear arbitrary localized damping, Differential and Integral Equations 27 (2014) 1–26. M. L. Santos, Bresse System in Thermoelasticity of Type III Acting on Shear Force, J. Elast. (2016) 125: 185. M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity, Arch. Rat. Mech. Anal. 76 (1981), 97–133. A. Soufyane, Stabilisation de la poutre de Timoshenko, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 731–734. A. Soufyane, Exponential stability of the linearized nonuniform Timoshenko beam, Nonlinear Anal. Real World Appl. 10 (2009) 1016–1020. A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equations 29 (2003) 14 pp. S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, Series 6, 41, issue 245, (1921) 744–746. S. P. Timoshenko, Vibration Problems in Engineering, Van Nostrand, New York, 1955.