On a Differential Equation with State-Dependent Delay
Tóm tắt
We study a family of scalar differential equations with a single parameter a > 0 and delay r > 0. In the case of the constant delay r = 1 it is known that for parameters 0 < a < 1 the trivial solution of this family is asymptotically stable, whereas for a > 1 the trivial solution gets unstable, and a global center-unstable manifold connects the trivial solution to a slowly oscillating periodic orbit. Here, we consider a state-dependent delay r = r(x(t)) > 0 instead of the constant one, and generalize the result on the existence of slowly oscillating periodic solutions for parameters a > 1 under modest conditions on the delay function r.
Tài liệu tham khảo
Amann, H.: Ordinary differential equations. An introduction to nonlinear analysis. In: De Gruyter Studies in Mathematics, vol. 13. Walter de Gruyter, Berlin (1990)
Brunovský P., Erdélyi A., Walther H.O.: On a model of a currency exchange rate—local stability and periodic solutions. J. Dyn. Diff. Equat. 16(2), 393–432 (2004)
Brunovský, P., Erdélyi, A., Walther, H.O.: Short-term fluctuations of exchange rates driven by expections. Preprint (2004)
Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.O.: Delay equations. Functional-, complex-, and nonlinear analysis. In: Applied Mathematical Sciences, vol. 110. Springer-Verlag, New York (1995)
Erdélyi, A.: A delay differential equation model of oscillations of exchange rates. Diploma thesis, Comenius University Bratislava, Bratislava (2003)
Hale J.K.: Asymptotic Behavior of Dissipative Systems. No. 25 in Mathematical Surveys and Monographs. American Mathematical Society (AMS), Providence (1988)
Hale, J.K., Verduyn Lunel, S.M.: Introduction to functional differential equations. In: Applied Mathematical Sciences, vol. 99. Springer-Verlag, New York (1993)
Hartung F., Krisztin T., Walther H.O., Wu J.: Functional differential equations with state-dependent delay. In: Cañada, A., Drábek, P., Fonda, A. (eds) Handbook of Differential Equations: Ordinary Differential Equations, vol. III, chap. 5, pp. 435–545. Elsevier B.V., Amsterdam (2006)
Krisztin T., Arino O.: The two-dimensional attractor of a differential equation with state-dependent delay. J. Dyn. Diff. Equat. 13(3), 453–522 (2001)
Mallet-Paret J.: Morse decompositions for delay-differential equations. J. Diff. Equat. 72(2), 270–315 (1988)
Mallet-Paret J., Nussbaum R.D.: Boundary layer phenomena for differential-delay equations with state-dependent time lags: I. Arch. Ration. Mech. Anal. 120, 99–146 (1992)
Mallet-Paret J., Nussbaum R.D.: Boundary layer phenomena for differential-delay equations with state dependent time lags: II. Journal fr die reine und angewandte Mathematik 477, 129–197 (1996)
Mallet-Paret J., Nussbaum R.D.: Boundary layer phenomena for differential-delay equations with state dependent time lags: III. J. Diff. Equat. 189, 640–692 (2003)
Mallet-Paret J., Sell G.R.: Systems of differential delay equations: Floquet multipliers and discrete lyapunov functions. J. Diff. Equat. 125(2), 385–440 (1996)
Stumpf, E.: On a differential equation with state-dependent delay: a global center-unstable manifold bordered by a periodic orbit. Doctoral dissertation, University of Hamburg (2010). http://www2.sub.uni-hamburg.de/opus/volltexte/2010/4603/
Stumpf, E.: The existence and C 1-smoothness of local center-unstable manifolds for differential equations with state-dependent delay. Preprint (2010)
Walther H.O.: The solution manifold and C 1-smoothness for differential equations with state-dependent delay. J. Diff. Equat. 195(1), 46–65 (2003)
Walther H.O.: Smoothness properties of semiflows for differential equations with state-dependent delays. J. Math. Sci. 124(4), 5193–5207 (2004)
Walther H.O.: Convergence to square waves for a price model with delay. Discr. Contin. Dyn. Syst. 13(5), 1325–1342 (2005)
Walther H.O.: Bifurcation of periodic solution with large periods for a delay differential equation. Annali di Matematica Pura ed Applicata 185(4), 577–611 (2006)