On a Class of Critical p-Biharmonic Kirchhoff Type Problems with Indefinite Weights
Tóm tắt
Using the genus theory introduced by Krasnoselskii and a variant of the mountain pass theorem due to Rabinowitz
[24], we study the existence of solutions for the following Kirchhoff type problem:
$$\begin{aligned} {\left\{ \begin{array}{ll} M\left( \int _\Omega |\Delta u|^p\,\mathrm{d}x\right) \Delta \Big (|\Delta u|^{p{-}2}\Delta u\Big ) {=} \lambda |u|^{p^{**}{-}2}u{+}a(x)|u|^{p{-}2}u{+}f(x,u), \,\, x\in \Omega ,\\ u = \frac{\partial u}{\partial \nu } = 0,\,\,x\in \partial \Omega , \end{array}\right. } \end{aligned}$$
where
$$\Omega $$
is a bounded domain in
$$\mathbb {R}^N$$
(
$$N\ge 3$$
) with
$$C^2$$
boundary,
$$1
Tài liệu tham khảo
Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical points theory and applications. J. Funct. Anal. 04, 349–381 (1973)
Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005)
Autuori, G., Colasuonno, F., Pucci, P.: On the existence of stationary solutions for higher-order \(p\)-Kirchhoff problems. Commun. Contemp. Math 16(5), 43 (2014)
Avci, M., Cekic, B., Mashiyev, R.A.: Existence and multiplicity of the solutions of the \(p(x)\) -Kirchhoff type equation via genus theory. Math. Methods in the Appl. Sci. 34(14), 1751–1759 (2011)
Ball, J.M.: Initial-boundary value for an extensible beam. J. Math. Anal. Appl. 42, 61–90 (1973)
Benedikt, J., Drábek, P.: Asymptotics for the principal eigenvalue of the \(p\)-biharmonic operator on the ball as \(p\) approaches \(1\). Nonlinear Anal. (TMA) 95, 735–742 (2014)
Bernis, F., Azorero, J.G., Peral, I.: Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order. Adv. Differ. Equ. 1, 219–240 (1996)
Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 437–477 (1983)
Bueno, H., Leme, L.P., Rodrigues, H.C.: Multiplicity of solutions for \(p\)-biharmonic problems with critical growth. Rock Mt. J. Math. 48(2), 425–442 (2018)
Cammaroto, F., Vilasi, L.: A critical Kirchhoff-type problem involving the \(p\)&\(q\)-Laplacian. Math. Nachr. 287(2–3), 184–193 (2014)
Chipot, M., Lovat, B.: Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. (TMA) 30(7), 4619–4627 (1997)
Chung, N.T.: Multiple solutions for a \(p(x)\)-Kirchhoff-type equation with sign-changing nonlinearities. Complex Var. Elliptic Equ. 58(12), 1637–1646 (2013)
Chung, N.T.: Existence of positive solutions for a nonlocal problem with dependence on the gradient. Appl. Math. Lett. 41, 28–34 (2015)
Chung, N.T., Minh, P.H.: Kirchhoff type problems involving \(p\)-biharmonic operators and critical exponents. J. Appl. Anal. Comput. 7(2), 659–669 (2017)
Colasuonno, F., Pucci, P.: Multiplicity of solutions for \(p(x)\)-polyharmonic Kirchhoff equations. Nonlinear Anal. (TMA) 74, 5962–5974 (2011)
Dai, G.: Three solutions for a nonlocal Dirichlet boundary value problem involving the \(p(x)\)-Laplacian. Appl. Anal. 92(1), 191–210 (2013)
Hamydy, A., Massar, M., Tsouli, N.: Existence of solution for \(p\)-Kirchhoff type problems with critical exponents. Electron. J. Differ. Equ. 2011(105), 1–8 (2011)
Khalil, A.E., Kellati, S., Touzani, A.: On the spectrum of the \(p\)-biharmonic operator. Electron. J. Differ. Equ. (Conf.) 9, 161–170 (2002)
Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
Lions, P.L.: The concentration compactness principle in the calculus of variations, the limit case (I). Rev. Mat. Iberoamericana 1(1), 145–201 (1985)
Lions, P.L.: The concentration compactness principle in the calculus of variations, the limit case (II). Rev. Mat. Iberoamericana 1(2), 45–121 (1985)
Gazzola, F., Grunau, H.C., Squassina, M.: Existence and nonexistence results for critical growth biharmonic elliptic equations. Calc. Var. 18, 117–143 (2003)
Mishra, P.K., Goyal, S., Sreenadh, K.: Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Commun. Pure Appl. Anal. 15(5), 1689–1717 (2016)
Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, Vol. 65 (1984)
Talbi, T., Tsouli, N.: On the spectrum of the weighted \(p\)-biharmonic operator with weight. Mediterr. J. Math. 4, 73–86 (2007)
Villaggio, P.: Mathematical Models for Elastic Structures. Cambridge University Press, Cambridge (1997)
Wang, W., Zhao, P.: Nonuniformly nonlinear elliptic equations of \(p\)-biharmonic type. J. Math. Anal. Appl. 348, 730–738 (2008)
Yucedag, Z., Avci, M., Mashiyev, R.A.: On an elliptic system of \(p(x)\)-Kirchhoff-type under Neumann boundary condition. Math. Model. Anal. 17(2), 161–170 (2012)
Zhao, L., Zhang, N.: Existence of solutions for a higher order Kirchhoff type problem with exponential critical growth. Nonlinear Anal. (TMA) 132, 214–226 (2016)