On Weibull–Burr impounded bivariate distribution
Tóm tắt
Từ khóa
Tài liệu tham khảo
Balakrishnan, N., & Lai, C. D. (2009). Continuous bivariate distributions. Berlin: Springer.
Basu, A. (1971). Bivariate failure rate. Journal of the American Statistical Association, 66(333), 103–104.
Bateman, H. (1954). Tables of integral transforms. New York: McGraw-Hill.
Chandler, K. (1952). The distribution and frequency of record values. Journal of the Royal Statistical Society Series B (Methodological), 14, 220–228.
Cohen, A. C. (1965). Maximum likelihood estimation in the weibull distribution based on complete and on censored samples. Technometrics, 7(4), 579–588.
David, H. A., & Nagaraja, H. N. (1998). In concomitants of order statistics. In N. Balakrishnan & C. R. Rao (Eds.), Handbook of statistics (Vol. 16, pp. 487–513). New York: Elsevier.
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (Vol. 1). England: Cambridge University Press.
Gan, L., & Jiang, J. (1999). A test for global maximum. Journal of the American Statistical Association, 94(447), 847–854.
Johnson, N. L., & Kotz, S. (1975). A vector multivariate hazard rate. Journal of Multivariate Analysis, 5(1), 53–66.
Justel, A., Peña, D., & Zamar, R. (1997). A multivariate kolmogorov-smirnov test of goodness of fit. Statistics and Probability Letters, 35(3), 251–259.
MacKenzie, D., & Spears, T. (2014). the formula that killed wall street: The gaussian copula and modelling practices in investment banking. Social Studies of Science, 44(3), 393–417.
Marshall, A. W., & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and weibull families. Biometrika, 84(3), 641–652.
Mogaji, K. A. (2016). Geoelectrical parameter-based multivariate regression borehole yield model for predicting aquifer yield in managing groundwater resource sustainability. Journal of Taibah University for Science, 10(4), 584–600.
Paul, J., & Thomas, P. Y. (2017). Concomitant record ranked set sampling. Communications in Statistics-Theory and Methods, 46(19), 9518–9540.
Small, C. G., Wang, J., & Yang, Z. (2000). Eliminating multiple root problems in estimation (with comments by john j. hanfelt, cc heyde and bing li, and a rejoinder by the authors). Statistical Science, 15(4), 313–341.
Thomas, P. Y. (2016). On concomitants of some ordered random variables and their applications in bivariate modelling problems. Journal of the Kerala Statistical Association, 27, 01–33.
Thomas, P. Y., Lal, S., & Veena, T. G. (2019). On a muted family of bivariate distributions. Applied Mathematical Modelling, 67, 510–528.
Thomas, P. Y., Philip, A., & Veena, T. G. (2014). Characterization of bivariate distributions using concomitants of generalized (k) record values. Statistica, 74(4), 431–436.
Thomas, P. Y., & Veena, T. G. (2011). On an application of concomitants of order statistics in characterizing a family of bivariate distributions. Communications in StatisticsTheory and Methods, 40(8), 1445–1452.
Thomas, P. Y., & Veena, T. G. (2014). Characterizations of bivariate distributions using concomitants of record values. Metrika, 77(7), 947–963.
Veena, T. G., & Thomas, P. Y. (2008). Characterizations of bivariate distributions by properties of concomitants of order statistics. Statistics and Probability Letters, 78(18), 3350–3354.