Vấn Đề Quasi-Cân Bằng Vector Thông Qua Định Lý Điểm Cố Định Kiểu Browder

Adela Capătă1
1Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Cluj, Romania

Tóm tắt

Bài báo này nhằm cung cấp các điều kiện đủ mới cho sự tồn tại của các nghiệm trong một bài toán quasi-cân bằng vector với các ánh xạ có giá trị tập hợp. Sử dụng một định lý điểm cố định kiểu Browder rất gần đây, cho phép chúng tôi làm nhẹ các giả thiết về độ nửa liên tục phía dưới thường gặp, các kết quả đã cải thiện một số định lý trong tài liệu và có thể được áp dụng ở nơi mà các định lý khác không thành công.

Từ khóa

#quasi-cân bằng vector; ánh xạ có giá trị tập hợp; định lý điểm cố định; độ nửa liên tục; điều kiện tồn tại nghiệm

Tài liệu tham khảo

Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 3rd edn. Springer, Berlin (2006) Ansari, Q.H., Bazán, F.F.: Generalized vector quasi-equilibrium problems with applications. J. Math. Anal. Appl. 277, 246–256 (2003) Ansari, Q.H., Bazán, F.F.: Recession methods for generalized vector equilibrium problems. J. Math. Anal. Appl. 321, 132–146 (2006) Ansari, Q.H., Oettli, W., Schläger, D.: A generalization of vectorial equilibria. Math. Methods Oper. Res. 46, 147–152 (1997) Ansari, Q.H., Konnov, I.V., Yao, J.C.: Existence of a solution and variational principles for vector equilibrium problems. J. Optim. Theory Appl. 110, 481–492 (2001) Ansari, Q.H., Konnov, I.V., Yao, J.C.: Characterizations of solutions for vector equilibrium problems. J. Optim. Theory Appl. 113, 435–447 (2002) Ansari, Q.H., Yao, J.C.: On vector quasi-equilibrium problems. In: Daniele, P., Giannessi, F., Maugeri, A. (eds.) Equilibrium Problems and Variational Models, vol. 68, pp. 1–18. Kluwer, Dordrecht (2003) Ansari, Q.H., Köbis, E., Yao, J.C.: Vector Variational Inequalities and Vector Optimization: Theory and Applications. Springer, Cham (2017) Bianchi, M., Hadjisavvas, N., Schaible, S.: Vector equilibrium problems with generalized monotone bifunctions. J. Optim. Theory Appl. 92, 527–542 (1997) Bigi, G., Capătă, A., Kassay, G.: Existence results for strong vector equilibrium problems and their applications. Optimization 61, 567–583 (2012) Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994) Borwein, J.: Multivalued convexity and optimization: a unified approach to inequality and equality constraints. Math. Program. 13, 183–199 (1977) Browder, F.E.: The fixed point theory of multi-valued mappings in topological vector spaces. Math. Ann. 177, 283–301 (1968) Capătă, A.: Existence results for globally efficient solutions of vector equilibrium problems via a generalized KKM principle. Acta. Math. Sci. Ser. B 37, 463–476 (2017) Capătă, A., Kassay, G., Mosoni, B.: On Weak Multifunction Equilibrium Problems. In: Burachik, R., Yao, J.C. (eds.) Variational Analysis and Generalized Differentiation in Optimization and Control, vol. 47, pp. 133–148. Springer, New York (2010) Capătă, A., Kassay, G.: On vector equilibrium problems and applications. Taiwanese J. Math. 15, 365–380 (2011) Ceng, L.C., Chen, G.Y., Huang, X.X., Yao, J.C.: Existence theorems for generalized vector variational inequalities with pseudomonotonicity and their applications. Taiwanese J. Math. 12, 151–172 (2008) Chadli, O., Wong, N.C., Yao, J.C.: Equilibrium problems with applications to eigenvalue problems. J. Optim. Theory Appl. 117, 245–266 (2003) Chadli, O., Schaible, S., Yao, J.C.: Regularized equilibrium problems with an application to noncoercive hemivariational inequalities. J. Optim. Theory Appl. 121, 571–596 (2004) Chadli, O., Liu, Z., Yao, J.C.: Applications of equilibrium problems to a class of noncoercive variational inequalities. J. Optim. Theory Appl. 132, 89–110 (2007) Chen, M.P., Lin, L.J., Park, S.: Remarks on generalized quasi-equilibrium problems. Nonlinear Anal. 52, 433–444 (2003) Darabi, M., Lotfipour, M., Zafarani, J.: Vector parametric quasi-equilibrium problems for the sum of two set-valued mappings. J. Nonlinear Var. Anal. 5, 267–279 (2021) Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequalities, vol. III, pp. 103–113. Academic Press, New York (1972) Fu, J.Y.: Vector equilibrium problems. Existence theorems and convexity of solution set. J. Global Optim. 31, 109–119 (2005) Gong, X.H., Yao, J.C.: Connectedness of the set of efficient solutions for generalized systems. J. Optim. Theory Appl. 138, 189–196 (2008) Gong, X.H., Yao, J.C.: Lower semicontinuity of the set of efficient solutions for generalized systems. J. Optim. Theory Appl. 138, 197–205 (2008) Kassay, G., Miholca, M., Vinh, N.T.: Vector quasi-equilibrium problems for the sum of two multivalued mappings. J. Optim. Theory Appl. 169, 424–442 (2016) Lin, L.J., Yu, Z.T.: On some equilibrium problems for multimaps. J. Comput. Appl. Math. 129, 171–183 (2001) Lin, L.J., Yu, Z.T., Kassay, G.: Existence of equilibria for multivalued mappings and its application to vectorial equilibria. J. Optim. Theory Appl. 114, 189–208 (2002) Liu, J., Wang, M., Yuan, Y.: Browder type fixed point theorems and Nash equilibria in generalized games. J. Fixed Point Theory Appl. 22, 16–71 (2020) Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989) Mahalik, K., Nahak, C.: Existence results for a class of variational quasi-mixed hemivariational-like inequalities. Bull. Malays. Math. Sci. Soc. (2022). https://doi.org/10.1007/s40840-021-01214-8 Mosco, U.: Implicit variational problems and quasi variational inequalities. In: Lecture Notes in Mathematics, vol. 543, pp. 83–156. Spinger, Berlin (1976) Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18, 1159–1166 (1992) Patriche, M.: Existence of solutions for systems of generalized quasi-equilibrium problems. Math. Methods Appl. Sci. 41, 803–817 (2018) Song, W.: Vector equilibrium problems with set-valued mappings. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, vol. 38, pp. 403–422. Kluwer Academic Publishers, Dordrecht (2000) Takahashi, W.: Fixed point, minimax, and Hahn-Banach theorems. Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983). In: Proceedings of Symposia in Pure Mathematics, Part 2, American Mathematical Society, Providence, RI, vol. 45, pp. 419–427 (1986) Takahashi, W.: Nonlinear Functional Analysis. Fixed Point Theory and its Applications. Yokohama Publishers, Yokohama (2000) Tian, G.Q.: Generalizations of the FKKM theorem and the Ky Fan Minimax inequality, with applications to maximal elements, price equilibrium, and complementarity. J. Math. Anal. Appl. 170, 457–471 (1992) Wang, S.H., Li, Q.Y., Fu, J.Y.: Strong vector equilibrium problems on noncompact sets. Bull. Malays. Math. Sci. Soc. 35, 119–132 (2012) Wu, X., Shen, S.K.: A further generalization of Yannelis Prabhakar’s continuous selection theorem and its applications. J. Math. Anal. Appl. 197, 61–74 (1996)