On Universality of Critical Behavior in the Focusing Nonlinear Schrödinger Equation, Elliptic Umbilic Catastrophe and the Tritronquée Solution to the Painlevé-I Equation

Boris Dubrovin1, Тамара Грава1, Christian Klein2
1SISSA, Trieste, Italy
2Max-Planck Institute, Leipzig, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, San Diego (2006)

Alinhac, S.: Blowup for Nonlinear Hyperbolic Equations. Progress in Nonlinear Differential Equations and their Applications, vol. 17. Birkhäuser, Boston (1995)

Arnold, V.I., Goryunov, V.V., Lyashko, O.V., Vasil’ev, V.A.: Singularity Theory I. Dynamical Systems VI. Encyclopaedia Math. Sci., vol. 6. Springer, Berlin (1993)

Boutroux, P.: Recherches sur les transcendants de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre. Ann. Éc. Norm. 30, 265–375 (1913)

Bronski, J.C., Kutz, J.N.: Numerical simulation of the semiclassical limit of the focusing nonlinear Schrödinger equation. Phys. Lett. A 254, 325–336 (2002)

Buckingham, R., Venakides, S.: Long-time asymptotics of the nonlinear Schrödinger equation shock problem. Commun. Pure Appl. Math. 60, 1349–1414 (2007)

Carles, R.: WKB analysis for the nonlinear Schrödinger equation and instability results. (2007). arxiv:math.AP/0702318

Ceniceros, H.D., Tian, F.-R.: A numerical study of the semi-classical limit of the focusing nonlinear Schrödinger equation. Phys. Lett. A 306, 25–34 (2002)

Claeys, T., Grava, T.: Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann–Hilbert approach. (2008). arxiv:math-ph/0801.2326

Claeys, T., Vanlessen, M.: The existence of a real pole-free solution of the fourth order analogue of the Painlevé I equation. (2006). arxiv:math-ph/0604046

Costin, O.: Correlation between pole location and asymptotic behavior for Painlevé I solutions. Commun. Pure Appl. Math. 52, 461–478 (1999)

Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

Dubrovin, B., Liu, S.-Q., Zhang, Y.: On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasitriviality of bihamiltonian perturbations. Commun. Pure Appl. Math. 59, 559–615 (2006)

Dubrovin, B.: On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behavior. Commun. Math. Phys. 267, 117–139 (2006)

Dubrovin, B.: On universality of critical behavior in Hamiltonian PDEs. AMS Transl. (2008, to appear). arxiv:math/0804.3790

Duits, M., Kuijlaars, A.: Painlevé I asymptotics for orthogonal polynomials with respect to a varying quartic weight. (2006). arxiv:math/0605201

Fokas, A.S., Tanveer, S.: A Hele–Shaw problem and the second Painlevé transcendent. Math. Proc. Camb. Philos. Soc. 124, 169–191 (1998)

Forest, M.G., Lee, J.E.: Geometry and modulation theory for the periodic nonlinear Schrödinger equation. In: Oscillation Theory, Computation, and Methods of Compensated Compactness, Minneapolis, MN, 1985. The IMA Volumes in Mathematics and Its Applications, vol. 2, pp. 35–69. Springer, New York (1986)

Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. I: the Cauchy problem, general case. J. Funct. Anal. 32, 1–32 (1979)

Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000) (Transl. from the Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger)

Grava, T., Klein, C.: Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations. Commun. Pure Appl. Math. 60, 1623–1664 (2007). arxiv:math-ph/0511011

Grava, T., Klein, C.: Numerical study of a multiscale expansion of KdV and Camassa–Holm equation. (2007). arxiv:math-ph/0702038

Grenier, E.: Semiclassical limit of the nonlinear Schrödinger equation in small time. Proc. Am. Math. Soc. 126, 523–530 (1998)

Grinevich, P., Novikov, S.P.: String equation, II: physical solution. Algebra Anal. 6(3), 118–140 (1994) (in Rusian); translation in St. Petersburg Math. J. 6, 553–574 (1995)

Holmes, P., Spence, D.: On a Painlevé-type boundary value problem. Q. J. Mech. Appl. Math. 37, 525–538 (1984)

Ince, E.L.: Ordinary Differential Equations. Dover, New York (1944)

Jin, S., Levermore, C.D., McLaughlin, D.W.: The behavior of solutions of the NLS equation in the semiclassical limit. In: Singular Limits of Dispersive Waves, Lyon, 1991. NATO Adv. Sci. Inst. Ser. B Phys., vol. 320, pp. 235–255. Plenum, New York (1994)

Joshi, N., Kitaev, A.: On Boutroux’s tritronquée solutions of the first Painlevé equation. Stud. Appl. Math. 107, 253–291 (2001)

Kamvissis, S.: Long time behavior for the focusing nonlinear Schrödinger equation with real spectral singularities. Commun. Math. Phys. 180, 325–341 (1996)

Kamvissis, S., McLaughlin, K.D.T.-R., Miller, P.D.: Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation. Annals of Mathematics Studies, vol. 154. Princeton University Press, Princeton (2003)

Kapaev, A.: Quasi-linear Stokes phenomenon for the Painlevé first equation. J. Phys. A: Math. Gen. 37, 11149–11167 (2004)

Kitaev, A.: The isomonodromy technique and the elliptic asymptotics of the first Painlevé transcendent. Algebra Anal. 5(3), 179–211 (1993); translation in St. Petersburg Math. J. 5(3), 577–605 (1994)

Klein, C.: Fourth order time-stepping for low dispersion Korteweg–de Vries and nonlinear Schrödinger equation. (2006). http://www.mis.mpg.de/preprints/2006/prepr2006_133.html

Krasny, R.: A study of singularity formation in a vortex sheet by the point-vortex approximation. J. Fluid Mech. 167, 65–93 (1986)

Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1988)

Lyng, G.D., Miller, P.D.: The N-soliton of the focusing nonlinear Schrödinger equation for N large. Commun. Pure Appl. Math. 60, 951–1026 (2007)

Métivier, G.: Remarks on the well-posedness of the nonlinear Cauchy problem. (2006). arxiv:math.AP/0611441

Miller, P.D., Kamvissis, S.: On the semiclassical limit of the focusing nonlinear Schrödinger equation. Phys. Lett. A 247, 75–86 (1998)

Newell, A.C.: Solitons in Mathematics and Physics. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 48. SIAM, Philadelphia (1985)

Novikov, S.P., Manakov, S.V., Pitaevskiĭ, L.P., Zakharov, V.E.: Theory of Solitons. The Inverse Scattering Method. Contemporary Soviet Mathematics. Consultants Bureau [Plenum], New York (1984) (transl. from the Russian)

Satsuma, J., Yajima, N.: Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Suppl. Prog. Theor. Phys. 55, 284–306 (1974)

Shabat, A.B.: One-dimensional perturbations of a differential operator, and the inverse scattering problem. In: Problems in Mechanics and Mathematical Physics, pp. 279–296. Nauka, Moscow (1976)

Shampine, L.F., Reichelt, M.W., Kierzenka, J.: Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c. (2003). Available at http://www.mathworks.com/bvp_tutorial

Sikivie, P.: The caustic ring singularity. Phys. Rev. D 60, 063501 (1999)

Slemrod, M.: Monotone increasing solutions of the Painlevé 1 equation y″=y 2+x and their role in the stability of the plasma-sheath transition. Eur. J. Appl. Math. 13, 663–680 (2002)

Thom, R.: Structural Stability and Morphogenesis: An Outline of a General Theory of Models. Addison-Wesley, Reading (1989)

Tovbis, A., Venakides, S., Zhou, X.: On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation. Commun. Pure Appl. Math. 57, 877–985 (2004)

Tovbis, A., Venakides, S., Zhou, X.: On the long-time limit of semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation: pure radiation case. Commun. Pure Appl. Math. 59, 1379–1432 (2006)

Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

Tsutsumi, Y.: L 2-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkc. Ekvacio 30, 115–125 (1987)

Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62–69 (1972); translated from Zh. Eksp. Teor. Fiz. 1, 118–134 (1971)