On Thermodynamics of Glasses

Springer Science and Business Media LLC - Tập 5 - Trang 67-88 - 1998
Miroslav Grmela1, Alain Cournoyer1
1École Polytechnique de Montréal, Succ. Centre-Ville Montréal (Québec), Canada

Tóm tắt

The purpose of this paper is to give a clear meaning to thermodynamics of glasses and to provide a simple illustration. The paper does not offer any new contribution to the microscopic understanding of the glass transition phenomena. The analysis leading to the formulation of thermodynamics proceeds as follows. Let M-level and N-level be two levels of description that are found (by making a comparison of predictions with results of observations) to be well suited for describing the time evolution of glasses. Let the N-level be the more macroscopic one (less detailed) of them. Thermodynamics on the N-level is a geometry in the state space used on the N-level. The geometry arises from an analysis of the time evolution on the M-level, in particular then, from the analysis of the approach of the time evolution on the M-level to the time evolution on the N-level. In the special case when the N-level is chosen to be the level of description used in equilibrium thermodynamics, then this view of thermodynamics becomes just one of the well known formulations of equilibrium thermodynamics. In the context of the analysis of glasses the level of equilibrium thermodynamics is not admissible since glasses do not reach equilibrium states. Two illustrations are worked out. In the first one, the N-level is chosen to be the level of description introduced in the hole theory of liquids, in the second one, the N-level is the level of description used frequently in rheology of polymeric fluids.

Từ khóa


Tài liệu tham khảo

J.M. O'Reilly and M. Goldstein, eds., Structure and Mobility in Molecular Atomic Glasses, Ann. of the New York Acad. of Sciences, vol. 371, 1981.

K. L. Ngai and G. B. Wright, eds., Relaxation in Complex Systems, Naval Res. Lab., Washington, DC 20375-5000, 1984.

J. Jäckle, Rep. Prog. Phys. 49, 171 (1986).

M. I. Klinger, Phys. Rep. 165, 275 (1988).

M. Grmela, J. Chem. Phys. 85, 5689 (1986).

M. Grmela, Phys. Rev. E. 48, 919 (1993).

L. D. Landau, Collected Papers of L. D. Landau, D. Ter Haar, ed., Pergamon, Oxford, 1965.

L. Boltzmann, Wissenschaftlichen Abhandlungen von Ludwig Boltzmann, vol. 2, Chelsea, New York, 1968.

M. Grmela, Physica D 21, 179 (1986); Rheological Modelling: Thermodynamic and Statistical Approaches, J. Casas-Vazquez and D. Jou, eds., Lecture Notes in Physics 381, 9 (199).

W. Gibbs, Collected Works, Longmans, New York, 1978.

H. Callen, Thermodynamics, Wiley, New York, 1960.

R. Hermann, Geometry, Physics and Systems, Dekker, New York, 1973.

P. Salamon, E. Ihring, and R. S. Berry, J. Math. Phys. 24, 2515 (1983).

R. Mrugala, J. D. Nulton, J. C. Schön, and P. Salomon, Phys. Rev. A 41, 3156 (1990).

D. Henderson, J. Chem. Phys. 37, 631 (1962).

M. H. Cohen and C. S. Crest in [2].

H. Baur, Rheologica Acta 28, 333 (1989); 31, 545 (1992).

C. Renner, H. Lwen, and J. L. Barrat, Phys. Rev. E 52, 5091 (1995).

N. G. van Kampen, Physics Reports 124, 69 (1985).

A. N. Gorban and I. V. Karlin, Transp. Th. Stat. Phys. 23, 559 (1994).

M. Grmela and H. C. Öttinger, Dynamics and Thermodynamics of Complex Fluids I. Development of a GENERIC Formalism, Phys. Rev. E, Dec. (1997).

H. C. Öttinger and M. Grmela, Dynamics and Thermodynamics of Complex Fluids II. Illustration of the GENERIC Formalism, Phys. Rev. E, Dec. (1997).

M. Grmela, Geometrical Formulation of the Separation into Fast and Slow Time Evolution, in preparation.

J. G. Kirkwood. Documents in Modern Physics, P. L. Auer, ed., Gordon and Breach, New York, 1967.

R. B. Bird, O. Hassager, R. C. Armstrong, and C. F. Curtiss, Dynamics of Polymeric Fluids, vol. 2, Wiley, New York, 1987.

M. Grmela, J. Rheol. 30, 707 (1986).

M. Grmela, J. Phys. A: Math. Gen. 22, 4375 (1989).

M. Grmela, B. Z. Dlugogorski, and G. Lebon, Macrom. Theory and Simul. 5, 1121 (1996).

R. D. Levin and M. Tribus, Maximum Entropy Formalism, MIT Press, Cambridge, MA, 1979.

R. Luzzi and A. R. Vasconcellos, Fortch. Phys. Prog. Phys. II, 887 (1990).

J. Casas-Vazquez and D. Jou, Phys. Rev. E 45, 8371 (1992); 49, 1040 (1994).

W. G. Hoover, Brad Lee Holian, and Harald A. Posch, Phys. Rev E 48, 3196 (1993).

Katja Henjes, Phys. Rev. E 48, 3199 (1993).

G. Adams and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

F. G. Shi, J. Mater. Res. 9, 1908 (1994).