On The Structure of A Commutative Banach Algebra Generated By Toeplitz Operators With Quasi-Radial Quasi-Homogeneous Symbols

Springer Science and Business Media LLC - Tập 74 Số 2 - Trang 199-231 - 2012
Wolfram Bauer1, Nikolai Vasilevski2
1Mathematisches Institut, Georg-August-Universität, Göttingen, Germany
2Departamento de Matemáticas, CINVESTAV del I.P.N., Mexico, Mexico

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bauer W., Vasilevski N.: Banach algebras of commuting Toeplitz operators on the ball via the quasi-hyperbolic group. Birkhäuser Oper. Adv. Appl. 218, 155–175 (2011)

Bauer W., Vasilevski N.: Commutative Toeplitz Banach algebras on the ball and quasi-nilpotent group action. Integr. Equ. Oper. Theory 72, 223–240 (2012)

Cordes H.O.: On a class of C*-algebras. Math. Ann. 170, 283–313 (1967)

Dash A.T.: Joint spectra. Studia Math. T. XLV 225–237 (1973)

Dunford N., Schwartz J.T.: Linear Operators, vol. II. Interscience Publishers, New York (1963)

Gamelin T.W.: Uniform Algebras. Prentice-Hall, Inc., Englewood Cliffs (1969)

Grudsky S., Quiroga-Barranco R., Vasilevski N.: Commutative C*-algebras of Toeplitz operators and quantization on the unit disk. J. Funct. Anal. 234(1), 1–44 (2006)

Larsen R.: Banach Algebras. Marcel Dekker Inc., New York (1973)

Le T.: Finite-rank products of Toeplitz operators in several complex variables. Integr. Equ. Oper. Theory 63(4), 547–555 (2009)

Luecking D.: Finite rank Toeplitz operators on the Bergman space. Proc. Am. Math. Soc. 136(5), 1717–1723 (2008)

Quiroga-Barranco R., Vasilevski N.: Commutative C*-algebras of Toeplitz operators on the unit ball. I. Bargmann-type transforms and spectral representations of Toeplitz operators. Integr. Equ. Oper. Theory 59(3), 379–419 (2007)

Quiroga-Barranco R., Vasilevski N.: Commutative C*-algebras of Toeplitz operators on the unit ball. II. Geometry of the level set of symbols. Integr. Equ. Oper. Theory 60(1), 89–132 (2008)

Rabinovich V., Roch S., Silbermann B.: Limit Operators and Their Applications in Operator Theory. Birkhäuser, Basel (2004)

Rickart C.A.: Banach algebras with an adjoint operation. Ann. Math. 4, 528–550 (1946)

Ryan R.A.: Introduction to Tensor Products of Banach Spaces. Springer, London (2002)

Vasilevski N.L.: On Bergman–Toeplitz operators with commutative symbol algebras. Integr. Equ. Oper. Theory 34(1), 107–126 (1999)

Vasilevski N.L.: Toeplitz operators on the Bergman spaces: inside- the-domain effects. Contemp. Math. 289, 79–146 (2001)

Vasilevski N.L.: Bergman space structure, commutative algebras of Toeplitz operators and hyperbolic geometry. Integr. Equ. Oper. Theory 46, 235–251 (2003)

Vasilevski N.L.: Quasi-radial quasi-homogeneous symbols and commutative Banach algebras of Toeplitz operators. Integr. Equ. Oper. Theory 66(1), 141–152 (2010)

Vasilevski N.L.: Parabolic quasi-radial quasi-homogeneous symbols and commutative algebras of Toeplitz operators. Birkhäuser Oper. Theory Adv. Appl. 202, 553–568 (2010)

Vasilevski, N.L., Grudsky, S.M., Maximenko, E.A.: Toeplitz operators on the Bergman space generated by radial symbols and slowly oscillating sequences. In: Proceedings of the Scientific School of I. B. Simonenko, Rostov-on-Don, Russia, pp. 38–43 (in Russian) (2010)

Venugopalkrishna U.: Fredholm operators associated with strongly pseudoconvex domains in C n . J. Funct. Anal. 9, 349–373 (1972)

Zhou Z.-H., Dong X.-T.: Algebraic properties of Toeplitz operators with radial symbols on the Bergman space of the unit ball. Integr. Equ. Oper. Theory 64, 137–154 (2009)

Zelazko W.: Continuous characters and joint topological spectrum. Control Cybern. 36(3), 859–864 (2007)