On Tensor Completion via Nuclear Norm Minimization
Tóm tắt
Từ khóa
Tài liệu tham khảo
E.J. Candès and B. Recht, Exact matrix completion via convex optimization, Foundations of Computational Mathematics, 9, 717–772 (2008).
E.J. Candès and T. Tao, The power of convex relaxation: Near-optimal matrix completion, IEEE Transactions on Information Theory, 56(5), 2053–2080 (2009).
S. Cohen and M. Collins, Tensor decomposition for fast parsing with latent-variable pcfgs, in Proceedings of NIPS 2012 (2012).
S. Gandy, B. Recht and I. Yamada, Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Problems, 27(2), 025010 (2011).
E. Giné and J. Zinn, Some limit theorems for empirical processes, The Annals of Probability, 12(4), 929–989 (1984).
D. Gross, Recovering low-rank matrices from few coefficients in any basis, IEEE Transaction on Information Theory, 57, 1548–1566 (2011).
C. Hillar and L.H. Lim, Most tensor problems are NP-hard, Journal of the ACM, 60(6), Art. 45 (2013).
T.G. Kolda and B.W. Bader, Tensor decompositions and applications, SIAM Review, 51(3), 455–500 (2009).
J.B. Kruskal, Rank, decomposition, and uniqueness for 3-way and N-way arrays, in “Multiway data analysis”, North-Holland, Amsterdam, pp. 7–18 (1989).
N. Li and B. Li, Tensor completion for on-board compression of hyperspectral images, In Image Processing (ICIP), 2010 17th IEEE International Conference on, 517–520 (2010).
J. Liu, P. Musialski, P. Wonka and J. Ye, Tensor completion for estimating missing values in visual data, In ICCV, 2114–2121 (2009).
N. Mesgarani, M. Slaney and S. Shamma, Content-based audio classification based on multiscale spectro-temporal features, IEEE Transactions on Speech and Audio Processing, 14(3), 920–930 (2006).
C. Mu, B. Huang, J. Wright and D. Goldfarb, Square deal: lower bounds and improved relaxations for tensor recovery, arXiv: 1307.5870 (2013).
B. Recht, A simpler approach to matrix completion, Journal of Machine Learning Research, 12, 3413–3430 (2011).
O. Semerci, N. Hao, M. Kilmer and E. Miller, Tensor based formulation and nuclear norm regularizatin for multienergy computed tomography, IEEE Transactions on Image Processing, 23(4), 1678–1693 (2014).
N.D. Sidiropoulos and N. Nion, Tensor algebra and multi-dimensional harmonic retrieval in signal processing for mimo radar, IEEE Trans. on Signal Processing, 58(11), 5693–5705 (2010).
M. Signoretto, L. De Lathauwer and J. Suykens, Nuclear norms for tensors and their use for convex multilinear estimation (2010). Preprint at ftp://ftp.esat.kuleuven.be/SISTA/signoretto/Signoretto_nucTensors .
M. Signoretto, R. Van de Plas, B. De Moor and J. Suykens, Tensor versus matrix completion: A comparison with application to spectral data, IEEE SPL, 18(7), 403–406 (2011).
R. Tomioka, K. Hayashi and H. Kashima, Estimation of low-rank tensors via convex optimization, arXiv preprint arXiv:1010.0789 (2010).
R. Tomioka, T. Suzuki, K. Hayashi and H. Kashima, Statistical performance of convex tensor decomposition, Advances in Neural Information Processing Systems (NIPS), 137 (2011).
J. Tropp, User-friendly tail bounds for sums of random matrices, Foundations of Computational Mathematics, 12, 389–434 (2012).