On Sufficient Conditions of Stability of the Permanent Rotations of a Heavy Triaxial Gyrostat
Tóm tắt
In this work using as a main tool geometric–mechanics methods we study the permanent rotations of a particular type of heavy triaxial gyrostat. Also, we obtain sufficient conditions of stability of the permanent rotations found previously through the Energy–Casimir method.
Tài liệu tham khảo
Anchev, A.: On the stability of permanent rotations of a heavy gyrostat. J. Appl. Math. Mech. 26(1), 26–34 (1962)
Anchev, A.: Permanent rotations of a heavy gyrostat having a stationary point. J. Appl. Math. Mech. 31(1), 48–58 (1967)
Cavas, J.A., Vigueras, A.: An integrable case of a rotational motion analogous to that of Lagrange and Poisson for a gyrostat in a Newtonian force field. Celest. Mech. Dyn. Astron. 60, 317–330 (1994)
Cochran, J.E., Shu, P.H., Rews, S.D.: Attitude motion of asymmetric dual-spin spacecraft. J. Guid. Control Dyn. 5, 37–42 (1982)
Drofa, V.N.: On the permanent axes of motion for a heavy gyrostat near an immovable point. J. Appl. Math. Mech. 25(5), 1411–1419 (1961)
Elipe, A., Lanchares, V.: Two equivalent problems: gyrostats in free motion and parametric Hamiltonians. Mech. Res. Comm. 24, 583–590 (1997)
Guirao, J.L.G., Vera, J.A.: Dynamics of a gyrostat on cylindrical and inclined Eulerian equilibria in the three body problem. Acta Astronautica 66, 595–604 (2010)
Guirao, J.L.G., Vera, J.A.: Lagrangian relative equilibria for a gyrostat in the three body problem. J. Phys. A Math. Theor. 43(19), 1–16 (2010)
Kalvouridis, T.J., Tsogas, V.: Rigid body dynamics in the restricted ring problem of \(n+1\) bodies. Astrophys. Space Sci. 282(4), 751–765 (2002)
Kalvouridis, T.J.: Stationary solutions of a small gyrostat in the Newtonian field of two bodies with equal masses. Nonlinear Dyn. 61(3), 373–381 (2010)
Leimanis, E.: The general problem of the motion of coupled rigid bodies about a fixed point. Springer, Berlin (1965)
Marsden, A., Ratiu, T., Weinstein, A.: Semidirect products and reduction in mechanics. Trans. Am. Math. Soc. 281, 147–177 (1984)
Ortega, J.P., Ratiu, T.S.: Stability of hamiltonian relative equilibria. Nonlinearity 12(3), 693–720 (1999)
Osepashvili, V.Z., Sulikashvili, R.S.: On the stability and bifurcation of the steady state motions of a heavy gyrostat. J. Appl. Math. Mech. 45(3), 19–421 (1981)
Rumiantsev, V.V.: On the stability of motion of gyrostats. J. Appl. Math. Mech. 25, 9–19 (1961)
Rumiantsev, V.V.: On the stability of motion of certain types of gyrostats. J. Appl. Math. Mech. 25, 1158–1169 (1961)
Staude, O.: Permanente Drehungen. Crelles J. Reine Angew. Math. 113, 318 (1894)
Tsodokova, N.S.: On the permanent axes of rotation of a gyrostat with a fixed point. J. Appl. Math. Mech. 29(6), 1296–1300 (1965)
Tsogas, V., Kalvouridis, T.J., Mavraganis, A.G.: Equilibrium states of a gyrostat satellite moving in the gravitational field of an annular configuration of \(n\) big bodies. Acta Mechanica 175(1–4), 181–195 (2005)
Vera, J.A., Vigueras, A.: Hamiltonian dynamics of a gyrostat in the n-body problem: relative equilibria. Celest. Mech. Dyn. Astron. 94(3), 289–315 (2006)
Vera, J.A.: Eulerian equilibria of a triaxial gyrostat in the three body problem: rotational Poisson dynamics in Eulerian equilibria. Nonlinear Dyn. 55(1–2), 191–201 (2009)
Volterra, V.: Sur la théorie des variations des latitudes. Acta Mathematica 22, 201–357 (1899)