On Stochastic Mirror-prox Algorithms for Stochastic Cartesian Variational Inequalities: Randomized Block Coordinate and Optimal Averaging Schemes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alpcan, T., Başar, T.: A game-theoretic framework for congestion control in general topology networks. In: Proceedings of the 41st IEEE Conference on Decision and Control, pp 1218–1224 (2002)
Alpcan, T., Başar, T.: Distributed algorithms for Nash equilibria of flow control games. Birkhäuser Boston, Boston (2005)
Ben-Tal, A., Nemirovski, A.S.: Lectures on modern convex optimization: analysis, algorithms, engineering applications. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2001)
Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distributed computation: numerical methods. Prentice-Hall Inc, Englewood Cliffs (1989)
Chen, X., Wets, R.J.b, Zhang, Y.: Stochastic variational inequalities: residual minimization smoothing sample average approximations. SIAM J. Optim. 22 (2), 649–673 (2012)
Chen, Y., Lan, G., Ouyang, Y.: Accelerated schemes for a class of variational inequalities. Math. Program. 165(1), 113–149 (2017)
Dang, C.D., Lan, G.: On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators. Comput. Optim. Appl. 60(2), 277–310 (2015)
Dang, C.D., Lan, G.: Stochastic block mirror descent methods for nonsmooth and stochastic optimization. SIAM J. Optim. 25(2), 856–881 (2015)
Facchinei, F., Pang, J.-S.: Finite-dimensional variational inequalities and complementarity problems. Vols. I,II. Springer series in operations research. Springer-Verlag, New York (2003)
Iusem, A., Jofre, A., Oliveira, R.I., Thompson, P.: Extragradient method with variance reduction for stochastic variational inequalities. SIAM J. Optim. 27(2), 686–724 (2017)
Iusem, A., Jofre, A., Thompson, P.: Incremental constraint projection methods for monotone stochastic variational inequalities. Math. Oper. Res. accepted (2017)
Jiang, H., Xu, H.: Stochastic approximation approaches to the stochastic variational inequality problem. IEEE Trans. Autom. Control 53, 1462–1475 (2008)
Juditsky, A., Nemirovski, A., Tauvel, C.: Solving variational inequalities with stochastic mirror-prox algorithm. Stoch. Syst. 1(1), 17–58 (2011)
Kannan, A., Shanbhag, U.V.: Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants. arXiv: 1410.1628 (2017)
Kannan, A., Shanbhag, U.V.: The pseudomonotone stochastic variational inequality problem: analytical statements and stochastic extragradient schemes. In: Proceedings of the American Control Conference (ACC), pp 2930–2935 (2014)
Kannan, A., Shanbhag, U.V., Kim, H. M.: Strategic behavior in power markets under uncertainty. Energy Syst. 2, 115–141 (2011)
Kannan, A., Shanbhag, U.V., Kim, H.M.: Addressing supply-side risk in uncertain power markets: stochastic Nash models, scalable algorithms and error analysis. Optimization Methods Softw. 28, 1095–1138 (2013)
Kelly, F., Maulloo, A., Tan, D.: Rate control for communication networks: shadow prices, proportional fairness, and stability. J. Oper. Res. Soc. 49, 237–252 (1998)
Korpelevich, G.M.: An extragradient method for finding saddle points and for other problems. Eknomika i Matematicheskie Metody 12(4), 747–756 (1976)
Koshal, J., Nedić, A., Shanbhag, U.V.: Single timescale stochastic approximation for stochastic Nash games in cognitive radio systems. In: Proceedings of the 17th international conference on Digital Signal Processing (DSP), pp 1–8 (2011)
Koshal, J., Nedić, A., Shanbhag, U.V.: Regularized iterative stochastic approximation methods for variational inequality problems. IEEE Trans. Autom. Control 58(3), 594–609 (2013)
Luo, Z.Q., Tseng, P.: On the convergence of the coordinate descent method for convex differentiable minimization. J. Optim. Theory Appl. 72(1), 7–35 (1992)
Luo, Z.Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: a general approach. Ann. Oper. Res. 46(1), 157–178 (1993)
Marecek, J., Richtarik, P., Takac, M.: Distributed block coordinate descent for minimizing partially separable functions. Numerical Analysis and Optimization, Springer Proceedings in Math. and Statistics, vol. 134, pp 261–288 (2015)
Nedić, A., Lee, S.: On stochastic subgradient mirror-descent algorithm with weighted averaging. SIAM J. Optim. 24(1), 84–107 (2014)
Nemirovski, A.: Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15, 229–251 (2004)
Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)
Nesterov, Y.E.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22(2), 341–362 (2010)
Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press (1970)
Polyak, B.T.: Introduction to optimization. Optimization Software, Inc., New York (1987)
Polyak, B.T., Juditsky, A.: Acceleration of stochastic approximation by averaging. SIAM J. Optim. 30(4), 838–855 (1992)
Richtarik, P., Takac, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144(2), 1–38 (2014)
Scutari, G., Facchinei, F., Pang, J-S., Palomar, D.: Monotone games for cognitive radio systems. pp. 83–112 (2012)
Shakkottai, S., Srikant, R.: Network optimization and control. Foundations Trends Netw. 2(3), 271–379 (2007)
Shanbhag, U.V., Infanger, G., Glynn, P.: A complementarity framework for forward contracting under uncertainty. Oper. Res. 59, 810–834 (2011)
Shapiro, A.: Monte Carlo sampling methods. In: Handbook in Operations Research and Management Science, vol. 10, pp 353–426. Elsevier Science, Amsterdam (2003)
Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. Series B 117(1), 387–423 (2009)
Wang, J., Scutari, G., Palomar, D.P.: Robust MIMO Cognitive Radio Via Game Theory. IEEE Trans. Signal Process. 59(3), 1183–1201 (2011)
Wang, M., Bertsekas, D.: Incremental constraint projection methods for variational inequalities. Math. Program. (Series A.) 150(2), 321–363 (2015)
Xu, H.: Sample average approximation methods for a class of stochastic variational inequality problems. Asia-Pacific J. Oper. Res. 27(1), 103–119 (2010)
Xu, Y., Yin, W.: A block coordinate descent method for multi-convex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imag. Sci. 6(3), 1758–1789 (2013)
Yin, H., Shanbhag, U.V., Mehta, P.G.: Nash equilibrium problems with scaled congestion costs and shared constraints. IEEE Trans. Autom. Control 56(7), 1702–1708 (2009)
Yousefian, F., Nedić, A., Shanbhag, U.V.: Optimal robust smoothing extragradient algorithms for stochastic variational inequality problems. In: 53rd IEEE Conference on Decision and Control, pp 5831–5836 (2014)
Yousefian, F., Nedić, A., Shanbhag, U.V.: Self-tuned stochastic approximation schemes for non-Lipschitzian stochastic multi-user optimization and Nash games. IEEE Trans. Autom. Control 61(7), 1753–1766 (2016)