On Stability of G-Frames in Hilbert Pro-C∗-Modules

Zahra Ahmadi Moosavi1, Akbar Nazari1
1Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

Tóm tắt

In this paper, we extend the basic stability theorem for frames in Hilbert C∗-modules to g-frames in Hilbert pro-C∗-modules. We also extend the Casazza-Christensen perturbation theorem to g-frames in Hilbert pro-C∗-modules and show that the Casazza-Christensen theorem is not valid for g-Riesz bases in Hilbert pro-C∗-modules. Finally, we derive some characterizations of g-frames in Hilbert pro-C∗-modules.

Từ khóa


Tài liệu tham khảo

Alizadeh, L., Hassani, M.: On frames for countably generated Hilbert modules over locally C*-algebras. Commun. Korean Math. 33(2), 527–533 (2018) Azhini, M., Haddadzadeh, N.: Fusion frames in Hilbert modules over pro-C*-algebras. Int. J. Industrial Math. 5(2), 109–118 (2013) Balan, R.: Stability theorem for Fourier frames and wavelet Riesz bases. J. Fourier Anal. Appl. 3, 499–504 (1997) Casazza, P., Christensen, O.: Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl. 3, 543–557 (1997) Christensen, O.: Frame perturbation. Proc. Am. Math. Soc. 123, 1217–1220 (1995) Christensen, O.: A Paley-Wiener theorem for frames. Proc. Am. Math. Soc. 123, 2199–2201 (1995) Frank, M., Larson, D.R.: Frames in Hilbert C*-algebras. J. Oper. Theory. 48, 273–314 (2002) Haddadzadeh, N.: G-frames in Hilbert pro-C*-modules. Int. J. Pure Appl. Math. 105, 727–743 (2015) Inoue, A.: Locally C*-algebras. Mem. Fac. Sci. Kyushu Univ. Ser. A 25(2), 197–235 (1971) Khosravi, A., Khosravi, B.: Fusion frames and G-frames in Hilbert C*-modules. Int. J. Wavelets Multiresolut. Inf. Process. 6, 433–446 (2008) Khosravi, A., Khosravi, B.: Frames and bases in tensor product of Hilbert spaces and Hilbert C*-modules. Proc. Indian Acad. Sci. Math. Sci. 117, 1–12 (2007) Phillips, N.C.: Inverse limits of C*-algebras. J. Operator Theory. 19, 159–195 (1988) Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322, 437–452 (2006) Xiao, X.-C., Zeng, X.-M.: Some properties of g-frames in Hilbert C*-modules. J. Math. Anal. Appl. 363, 399–408 (2010) Young, R.: An Introduction to Non-Harmonic Fourier Series. Acadomic Press, New York (1980) Zhuraev, Y.I., Sharipov, F.: Hilbert modules over locally C*-algebra. arXiv:math 0011053 V3 [math OA] (2001)