On Smoothness of the Green Function for the Complement of a Rarefied Cantor-Type Set

Springer Science and Business Media LLC - Tập 33 - Trang 265-271 - 2010
Muhammed Altun1, Alexander Goncharov2
1Department of Mathematics, Adiyaman University, Adiyaman, Turkey
2Department of Mathematics, Bilkent University, Ankara, Turkey

Tóm tắt

Smoothness of the Green functions for the complement of rarefied Cantor-type sets is described in terms of the function $\varphi (\delta)=(1/\log\frac{1}{\delta})$ that gives the logarithmic measure of sets. Markov’s constants of the corresponding sets are evaluated.

Tài liệu tham khảo

Altun, M., Goncharov, A.: A local version of the Pawłucki–Pleśniak extension operator. J. Approx. Theory 132, 34–41 (2005) Andrievskii, V.V.: The highest smoothness of the Green function implies the highest density of a set. Ark. Mat. 42, 217–238 (2004) Andrievskii, V.V.: On optimal smoothness of the Green function for the complement of a Cantor-type set. Constr. Approx. 24, 113–122 (2006) Andrievskii, V.V.: Constructive function theory on sets of the complex plane through potential theory and geometric function theory. Surv. Approx. Theory 2, 1–52 (2006) Arslan, B., Goncharov, A., Kocatepe, M.: Spaces of Whitney functions on Cantor-type sets. Can. J. Math. 54(2), 225–238 (2002) Białas, L., Volberg, A.: Markov’s property of the Cantor ternary set. Stud. Math. 104, 259–268 (1993) Białas-Cieź, L., Eggink, R.: L-regularity of Markov sets and of m-perfect sets in the complex plane. Constr. Approx. 27, 237–252 (2008) Carleson, L.: Selected Problems on Exceptional Sets. Princeton Univ. Press, Princeton (1967) Carleson, L., Totik, V.: Hölder continuity of Green’s functions. Acta Sci. Math. (Szeged) 70(3–4), 557–608 (2004) Erdélyi, T., Kroó, A., Szabados, J.: Markov-Bernstein type inequalities on compact subsets of R. Anal. Math. 26(1), 17–34 (2000) Goncharov, A.: Basis in the spaces of C ∞-functions on Cantor-type sets. Constr. Approx. 23(3), 351–360 (2006) Nevanlinna, R.: Analytic Functions. Springer, Berlin (1970) Pleśniak, W.: A Cantor regular set which does not have Markov’s property. Ann. Pol. Math. 51, 269–274 (1990) Pommerenke, C.: Univalent Functions. Vandenhoeck and Ruprecht, Göttingen (1975) Ransford, T., Rostand, J.: Hölder exponents of Green’s functions of Cantor sets. Comput. Methods Funct. Theory 1, 151–158 (2008) Totik, V.: Markoff constants for Cantor sets. Acta Sci. Math. (Szeged) 60, 715–734 (1995) Totik, V.: Metric Properties of Harmonic Measures. Mem. Am. Math. Soc. 184, 867 (2006) Tsuji, M.: Potential Theory in Modern Function Theory. Maruzen, Tokio (1959) Walsh, J.L.: Interpolation and Approximation by Rational Functions in the Complex Domain. Colloquium Publications, vol. 20. Am. Math. Soc., Providence (1960)