On Smoothness of the Green Function for the Complement of a Rarefied Cantor-Type Set
Tóm tắt
Smoothness of the Green functions for the complement of rarefied Cantor-type sets is described in terms of the function
$\varphi (\delta)=(1/\log\frac{1}{\delta})$
that gives the logarithmic measure of sets. Markov’s constants of the corresponding sets are evaluated.
Tài liệu tham khảo
Altun, M., Goncharov, A.: A local version of the Pawłucki–Pleśniak extension operator. J. Approx. Theory 132, 34–41 (2005)
Andrievskii, V.V.: The highest smoothness of the Green function implies the highest density of a set. Ark. Mat. 42, 217–238 (2004)
Andrievskii, V.V.: On optimal smoothness of the Green function for the complement of a Cantor-type set. Constr. Approx. 24, 113–122 (2006)
Andrievskii, V.V.: Constructive function theory on sets of the complex plane through potential theory and geometric function theory. Surv. Approx. Theory 2, 1–52 (2006)
Arslan, B., Goncharov, A., Kocatepe, M.: Spaces of Whitney functions on Cantor-type sets. Can. J. Math. 54(2), 225–238 (2002)
Białas, L., Volberg, A.: Markov’s property of the Cantor ternary set. Stud. Math. 104, 259–268 (1993)
Białas-Cieź, L., Eggink, R.: L-regularity of Markov sets and of m-perfect sets in the complex plane. Constr. Approx. 27, 237–252 (2008)
Carleson, L.: Selected Problems on Exceptional Sets. Princeton Univ. Press, Princeton (1967)
Carleson, L., Totik, V.: Hölder continuity of Green’s functions. Acta Sci. Math. (Szeged) 70(3–4), 557–608 (2004)
Erdélyi, T., Kroó, A., Szabados, J.: Markov-Bernstein type inequalities on compact subsets of R. Anal. Math. 26(1), 17–34 (2000)
Goncharov, A.: Basis in the spaces of C ∞-functions on Cantor-type sets. Constr. Approx. 23(3), 351–360 (2006)
Nevanlinna, R.: Analytic Functions. Springer, Berlin (1970)
Pleśniak, W.: A Cantor regular set which does not have Markov’s property. Ann. Pol. Math. 51, 269–274 (1990)
Pommerenke, C.: Univalent Functions. Vandenhoeck and Ruprecht, Göttingen (1975)
Ransford, T., Rostand, J.: Hölder exponents of Green’s functions of Cantor sets. Comput. Methods Funct. Theory 1, 151–158 (2008)
Totik, V.: Markoff constants for Cantor sets. Acta Sci. Math. (Szeged) 60, 715–734 (1995)
Totik, V.: Metric Properties of Harmonic Measures. Mem. Am. Math. Soc. 184, 867 (2006)
Tsuji, M.: Potential Theory in Modern Function Theory. Maruzen, Tokio (1959)
Walsh, J.L.: Interpolation and Approximation by Rational Functions in the Complex Domain. Colloquium Publications, vol. 20. Am. Math. Soc., Providence (1960)