On Saint-Venant’s Problem with Concentrated Loads

Antonio Russo1
1Seconda Università di Napoli, Caserta, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barré de Saint Venant, A.J.C.: Mémoire sur la Torsion des Prismes, Mém. Divers Savants. C. R. Math. Acad. Sci. Paris 14, 233–560 (1855)

Cialdea, A.: Elastostatics with non absolutely continuous data. J. Elast. 23, 13–51 (1990)

Clebsch, A.: Theorie der Elasticität fester Körper. Teubner, Leipzig (1962)

Dahlberg, B.J., Kenig, C.E.: L p estimates for the 3 dimensional systems of elastostatics in Lipschitz domains. In: Analysis and Partial Differential Equations. Lectures Notes in Pure and Appl. Math., vol. 122, pp. 621–634. Dekker, New York (1990)

Dahlberg, B.E.J., Kenig, C.E., Verchota, G.: Boundary value problems for the system of elastostatics in Lipschitz Domains. Duke Math. J. 57, 795–818 (1988)

Duvaut, G., Lions, J.L.: Les Inéquations en Mécanique et en Physique. Dunod, Paris (1972)

Fichera, G.: Remarks on Saint-Venant’s principle. Rend. Mat. Appl. 12, 181–200 (1979)

Giaquinta, M., Modica, G.: Non linear systems of the type of the stationary Navier-Stokes system. J. Reine Angew. Math. 330, 173–214 (1982)

Giusti, E.: Metodi diretti nel calcolo delle variazioni. Unione Matematica Italiana (1994); english translation—Direct methods in the calculus of variations. Word Scientific (2004)

Gurtin, M.E.: The linear theory of elasticity. In: Truesedell, C. (ed.) Handbuch der Physik, vol. VIa/2. Springer, Berlin (1972)

Horgan, C.O.: Recent developments concerning Saint-Venant’s principle: An update. Appl. Mech. Rev. 2, 295–303 (1989)

Horgan, C.O.: Recent developments concerning Saint-Venant’s principle: A second update. Appl. Mech. Rev. 49, 101–111 (1996)

Horgan, C.O., Knowles, J.K.: Recent developments concerning Saint-Venant’s principle. Adv. Appl. Mech. 23, 179–269 (1983)

Iesan, D.: Saint-Venant’s Problem. Lecture Notes in Mathematics, vol. 1279. Springer, Berlin (1987)

Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam (1979)

Ladyzhenskaia, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, London (1969)

Mitrea, M., Taylor, M.: Navier–Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955–987 (2001)

Nečas, J.: Les Méthodes Directes en Théorie des Équations Élliptiques. Masson, Paris (1967)

Russo, A.: On Leray’s problem under Navier conditions. Commun. Appl. Ind. Math. 1(2), 165–185 (2010) (available on line http://openjournal.simai.eu/index.php/caim/article/view/2010CAIM556 )

Russo, A., Tartaglione, A.: Strong uniqueness theorems and the Phragmèn-Lindelöf principle in nonhomogeneous elastostatics. J. Elast. 102, 133–149 (2011)

Schechter, M.: Principles of Functional Analysis. Academic Press, New York (1971)

Sternberg, E., Knowles, J.K.: Minimum energy characterizations of Saint-Venant’s solution to the relaxed Saint-Venant problem. Arch. Ration. Mech. Anal. 21, 89–107 (1966)

Toupin, R.: Saint-Venant’s principle. Arch. Ration. Mech. Anal. 18, 83–96 (1965)