On Root Multiplicities of Some Hyperbolic Kac–Moody Algebras

Letters in Mathematical Physics - Tập 42 - Trang 153-166 - 1997
Michel Bauer-Violette1, Denis Bernard1
1Service de Physique Théorique de Saclay, Laboratoire de la Direction des Sciences de la Matière du Commisariat à l'energie Aaatomique, Gif-sur-Yvette, France

Tóm tắt

Using the coset construction, we compute the root multiplicities at level-3 for some hyperbolic Kac–Moody algebras including the basic hyperbolic extension of A1 1 and E10.

Tài liệu tham khảo

Kac, V. G.: Infinite-Dimensional Lie Algebras, Cambridge University Press, 1990. Saclioglu, C.: J. Phys. A 22 (1989), 3753. Feingold, A. and Frenkel, I.: Math. Ann. 263 (1983), 87. Feingold, A. and Frenkel, I.: J. Algebra 156 (1993), 433. Humphreys, J.: Introduction to Lie Algebras and Representation Theory, Springer-Verlag Berlin,1992; Bourbaki, N.: Groupes et algèbres de Lie, Chs. 4-6, Hermann, Paris, 1968. Borcherds, R. E.: J. Algebra 115 (1990), 219; J. Algebra 140 (1991), 330. Goddard, P., Kent, A. and Olive, D.: Phys. Lett. B 152 (1985), 88. Kac, V. G., Moody, R. V. and Wakimoto, M.: On E10, Preprint, 1988. Harvey J. and Moore, G.: Nuclear Phys. B 463 (1996), 315, hep-th/9610182. Dijkgraaf, R., Verlinde, E. and Verlinde, H.: Counting dyons in N = 4 string theory, hepth/9607026. Bernard, D. and Leclair, A.: Comm. Math. Phys. 142 (1991), 99. Kang, S.-J.: Trans. Amer. Math. Soc. 329 (1993), 463; J. Algebra 160 (1993), 492.