On Positive Solutions of Elliptic Equations with Oscillating Nonlinearity in $$\mathbb {R}^N$$

Mediterranean Journal of Mathematics - Tập 19 - Trang 1-19 - 2022
Francisco J. S. A. Corrêa1, Romildo N. de Lima1, Alânnio B. Nóbrega1
1Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, Campina Grande, Brazil

Tóm tắt

In this paper, we study results of existence and multiplicity of positive solutions for the following semilinear problem $$\begin{aligned} \left\{ \begin{array}{lcl} -\Delta u= \lambda P(x)f(u)\, \text{ in } \, \mathbb {R}^N\\ \lim \limits _{|x|\rightarrow \infty }u(x)=0, \end{array} \right. \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad {(P)} \end{aligned}$$ where $$P\in C(\mathbb {R}^N,\mathbb {R})$$ and $$f\in C([0,\infty ),\mathbb {R})$$ is an oscillating nonlinearity satisfying a sort of area condition. The main tools used are variational methods and sub-supersolution method.

Tài liệu tham khảo

Alves, C.O., de Lima, R.N., Nóbrega, A.B.: Bifurcation properties for a class of fractional Laplacian equations in \(\mathbb{R}^N\). Math. Nachr. 291, 2125–2144 (2018) Alves, C.O., de Lima, R.N., Souto, M.A.S.: Existence of a solution for a non-local problem in \(\mathbb{R}^N\) via bifurcation theory. Proc. Edinb. Math. Soc. 6(1), 825–845 (2018) Brown, K.J., Budin, H.: Multiple positive solutions for a class of nonlinear boundary valueproblems. J. Math. Anal. Appl. 60, 329–338 (1977) Brown, K.J., Budin, H.: On the existence of positive solutions for a class of semilinear elliptic boundary value problems. SIAM J. Math. Anal. 60, 875–883 (1979) Chipot, M., Roy, P.: Existence results for some functional elliptic equations. Differ. Integral Equ. 27, 289–300 (2014) Corrêa, F.J.S.A., Corrêa, A.S., Santos Junior, J.R.: Multiple ordered positive solutions of an elliptic problem involving the \(p\) & \(q\)-Laplacian. J. Convex Anal. 21(4), 1023–1042 (2014) Corrêa, F.J.S.A., Carvalho, M.L., Gonçalves, J.V.A., Silva, K.O.: Positive solutions of strongly nonlinear elliptic problems. Asymptot. Anal. 93, 1–20 (2015). https://doi.org/10.3233/ASY-141278 Chipot, M., Corrêa, F.J.S.A.: Boundary layer solutions to functional elliptic equations. Bull. Braz. Math. Soc. New Ser. 40(3), 381–393 (2009) Dai, G.: On positive solutions for a class of nonlocal problems. Electron. J. Qual. Theory Differ. Equ. 58, 1–12 (2012) Dancer, E.N., Sweers, G.: On the existence of a maximal weak solution for a semilinear elliptic equation. Differ. Integral Equ. 2(4), 533–540 (1989) De Figueiredo, D.G.: On the existence of multiple ordered solutions for nonlinear eigenvalue problems. Nonlinear Anal. 11, 481–492 (1987) Edelson, A.L., Rumbos, A.J.: Linear and semilinear eigenvalue problems in \(\mathbb{R}^N\). Commun. Partial Differ. Equ. 18(1–2), 215–240 (1993) Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics, vol. 19, AMS (1998) Hess, P.: On multiple solutions of nonlinear elliptic eigenvalue problems. Commun. Partial Differ. Equ. 6(8), 951–961 (1981) Ho, K., Kim, C.G., Sim, I.: Multiple solutions for quasilinear elliptic equations of \(p(x)\)-Laplacian type with sign-changing nonlinearity. Electron. J. Differ. Equ. 237, 1–12 (2014) Kato, T.: Schrödinger operators with singular potentials. Isr. J. Math. 13, 135–148 (1972) Landkof, N.S.: Foundations of modern potential theory. Die Grundlehren der mathematicschen Wissenschaften, Band 180. Translated from the Russian by A.P. Doohovskoy. Springer, New York (1972) Loc, N.H., Schmitt, K.: On positive solutions of quasilinear elliptic equations. Differ. Integral Equ. 22(9/10), 829–842 (2009)