On Positive Solutions of Elliptic Equations with Oscillating Nonlinearity in $$\mathbb {R}^N$$
Tóm tắt
In this paper, we study results of existence and multiplicity of positive solutions for the following semilinear problem
$$\begin{aligned} \left\{ \begin{array}{lcl} -\Delta u= \lambda P(x)f(u)\, \text{ in } \, \mathbb {R}^N\\ \lim \limits _{|x|\rightarrow \infty }u(x)=0, \end{array} \right. \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad {(P)} \end{aligned}$$
where
$$P\in C(\mathbb {R}^N,\mathbb {R})$$
and
$$f\in C([0,\infty ),\mathbb {R})$$
is an oscillating nonlinearity satisfying a sort of area condition. The main tools used are variational methods and sub-supersolution method.
Tài liệu tham khảo
Alves, C.O., de Lima, R.N., Nóbrega, A.B.: Bifurcation properties for a class of fractional Laplacian equations in \(\mathbb{R}^N\). Math. Nachr. 291, 2125–2144 (2018)
Alves, C.O., de Lima, R.N., Souto, M.A.S.: Existence of a solution for a non-local problem in \(\mathbb{R}^N\) via bifurcation theory. Proc. Edinb. Math. Soc. 6(1), 825–845 (2018)
Brown, K.J., Budin, H.: Multiple positive solutions for a class of nonlinear boundary valueproblems. J. Math. Anal. Appl. 60, 329–338 (1977)
Brown, K.J., Budin, H.: On the existence of positive solutions for a class of semilinear elliptic boundary value problems. SIAM J. Math. Anal. 60, 875–883 (1979)
Chipot, M., Roy, P.: Existence results for some functional elliptic equations. Differ. Integral Equ. 27, 289–300 (2014)
Corrêa, F.J.S.A., Corrêa, A.S., Santos Junior, J.R.: Multiple ordered positive solutions of an elliptic problem involving the \(p\) & \(q\)-Laplacian. J. Convex Anal. 21(4), 1023–1042 (2014)
Corrêa, F.J.S.A., Carvalho, M.L., Gonçalves, J.V.A., Silva, K.O.: Positive solutions of strongly nonlinear elliptic problems. Asymptot. Anal. 93, 1–20 (2015). https://doi.org/10.3233/ASY-141278
Chipot, M., Corrêa, F.J.S.A.: Boundary layer solutions to functional elliptic equations. Bull. Braz. Math. Soc. New Ser. 40(3), 381–393 (2009)
Dai, G.: On positive solutions for a class of nonlocal problems. Electron. J. Qual. Theory Differ. Equ. 58, 1–12 (2012)
Dancer, E.N., Sweers, G.: On the existence of a maximal weak solution for a semilinear elliptic equation. Differ. Integral Equ. 2(4), 533–540 (1989)
De Figueiredo, D.G.: On the existence of multiple ordered solutions for nonlinear eigenvalue problems. Nonlinear Anal. 11, 481–492 (1987)
Edelson, A.L., Rumbos, A.J.: Linear and semilinear eigenvalue problems in \(\mathbb{R}^N\). Commun. Partial Differ. Equ. 18(1–2), 215–240 (1993)
Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics, vol. 19, AMS (1998)
Hess, P.: On multiple solutions of nonlinear elliptic eigenvalue problems. Commun. Partial Differ. Equ. 6(8), 951–961 (1981)
Ho, K., Kim, C.G., Sim, I.: Multiple solutions for quasilinear elliptic equations of \(p(x)\)-Laplacian type with sign-changing nonlinearity. Electron. J. Differ. Equ. 237, 1–12 (2014)
Kato, T.: Schrödinger operators with singular potentials. Isr. J. Math. 13, 135–148 (1972)
Landkof, N.S.: Foundations of modern potential theory. Die Grundlehren der mathematicschen Wissenschaften, Band 180. Translated from the Russian by A.P. Doohovskoy. Springer, New York (1972)
Loc, N.H., Schmitt, K.: On positive solutions of quasilinear elliptic equations. Differ. Integral Equ. 22(9/10), 829–842 (2009)