On Pointwise Decay of Linear Waves on a Schwarzschild Black Hole Background

Roland Donninger1, Wilhelm Schlag1, Avy Soffer2
1Department of Mathematics, University of Chicago, 5734 South University Avenue, Chicago, IL, 60637, USA
2Department of Mathematics, Rutgers University, 110 Freylinghuysen Road, Piscataway, NJ, 08854, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Reprint of the 1972 edition. New York: Dover Publications, Inc., 1992

Alexandrova I., Bony J., Ramond T.: Resolvent and scattering matrix at the maximum of the potential. Serdica Math. J 34(1), 267–310 (2008)

Amrein, W., Boutet de Monvel, A., Georgescu, V.: C 0-groups, commutator methods and spectral theory of N-body Hamiltonians. Progress in Mathematics, 135. Basel: Birkhäuser Verlag, 1996

Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Preprint http://arXiv.org/abs/0908.2265v2 [math.AP], 2009

Balogh C.B.: Asymptotic expansions of the modified Bessel function of the third kind of imaginary order. SIAM J. Appl. Math 15, 1315–1323 (1967)

Bony, J.-F., Fujiié, S., Ramond, T., Zerzeri, M.: Microlocal solutions of Schrödinger equations at a maximum point of the potential, Preprint 2009

Bony J.-F., Häfner D.: Decay and non-decay of the local energy for the wave equation on the de Sitter-Schwarzschild metric. Commun. Math.Phys. 282(3), 697–719 (2008)

Briet P., Combes J.-M., Duclos P.: On the location of resonances for Schrödinger operators in the semiclassical limit. II. Barrier top resonances. Comm. Par. Diff. Eqs 12(2), 201–222 (1987)

Costin, O., Donninger, R., Schlag, W., Tanveer, S.: Semiclassical low energy scattering for one-dimensional Schrödinger operators with exponentially decaying potentials. To appear in Annales Henri Poincaré. http://arXiv.org/abs/1105.4221v1 [math.SP], 2011

Costin O., Schlag W., Staubach W., Tanveer S.: Semiclassical analysis of low and zero energy scattering for one-dimensional Schrödinger operators with inverse square potentials. J. Funct. Anal. 255(9), 2321–2362 (2008)

Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Preprint 2008, http://arXiv.org/abs/0811.0354v1 [gr-qc], 2008

Dafermos M., Rodnianski I.: The red-shift effect and radiation decay on black hole spacetimes. Comm. Pure Appl. Math 62(7), 859–919 (2009)

Dafermos M., Rodnianski I.: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Invent. Math 185, 467–559 (2011)

Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I-II: The cases |a| < < M or axisymmetry. Preprint http://arXiv.org/abs/1010.5132v1 [gr-qc], 2010

Davies E.B.: Spectral Theory and Differential Operators. Cambridge Univ. Press, Cambridge (1995)

Donninger R., Schlag W.: Decay estimates for the one-dimensional wave equation with an inverse power potential. Int. Math. Res. Not. 2010(22), 4276–4300 (2010)

Donninger R., Schlag W., Soffer A.: A proof of Price’s law on Schwarzschild black hole manifolds for all angular momenta. Adv. Math. 226(1), 484–540 (2011)

Finster F., Kamran N., Smoller J., Yau S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys 264(2), 465–503 (2006)

Gérard C., Grigis A.: Precise estimates of tunneling and eigenvalues near a potential barrier. J. Diff. Eqs 72(1), 149–177 (1988)

Graf G.: The Mourre estimate in the semiclassical limit. Lett. Math. Phys. 20(1), 47–54 (1990)

Gustafson S., Sigal I.M.: Mathematical concepts of quantum mechanics. Springer-Verlag, Universitext Berlin (2003)

Hawking S., Ellis G.: The large scale structure of space-time Cambridge Monographs on Mathematical Physics No 1. Cambridge University Press, London-New York (1973)

Helffer, B., Sjöstrand, J.: Semiclassical analysis of Harper’s equation III. Bull. Soc. Math. France, Memoire 39, 1990

Hislop P., Nakamura S.: Semiclassical resolvent estimates. Ann.Inst. H. Poincaré Phys. Théor 51(2), 187–198 (1989)

Hunziker W., Sigal I.M.: Time-dependent scattering theory of N-body quantum systems. Rev. Math. Phys. 12(8), 1033–1084 (2000)

Hunziker W., Sigal I.M., Soffer A.: Minimal escape velocities. Comm. Par. Diff. Eqs 24(11–12), 2279–2295 (1999)

Ivrii V.Ja., Sigal I.M.: Asymptotics of the ground state energies of large Coulomb systems. Ann. of Math 138(2), 243–335 (1993)

Kay B., Wald R.: Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation 2-sphere. Class. Quan. Grav 4(4), 893–898 (1987)

Marzuola J., Metcalfe J., Tataru D., Tohaneanu M.: Strichartz estimates on Schwarzschild black hole backgrounds. Commun. Math. Phys 293(1), 37–83 (2010)

Metcalfe, J., Tataru, D., Tohaneanu, M.: Price’s Law on Nonstationary Spacetimes. Preprint http://arXiv.org/abs/1104.5437v2 [math.AP], 2011

Luk J.: Improved decay for solutions to the linear wave equation on a Schwarzschild black hole. Ann. Henri Poincaré 11(5), 805–880 (2010)

Luk, J.: A Vector Field Method Approach to Improved Decay for Solutions to the Wave Equation on a Slowly Rotating Kerr Black Hole. Preprint, http://arXiv.org/abs/1009.0671v2 [gr-qc], 2011

Miller, P.D.: Applied asymptotic analysis. Graduate Studies in Mathematics, 75. Providence, RI: Amer. Math. Soc., 2006

Nakamura S.: Semiclassical resolvent estimates for the barrier top energy. Commun. Par. Diff. Eq. 16(4/5), 873–883 (1991)

Olver, F.W.J.: Asymptotics and Special Functions, Wellesley, MA: A K Peters, Ltd. 1997

Mourre E.: Absence of singular continuous spectrum for certain selfadjoint operators. Commun. Math. Phys. 78(3), 391–408 (1980/81)

Price R.: Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Phys. Rev. D 5(3), 2419–2438 (1972)

Price R.: Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields. Phys. Rev. D 5(3), 2439–2454 (1972)

Ramond T.: Semiclassical study of quantum scattering on the line. Commun. Math. Phys. 177(1), 221–254 (1996)

Schlag W., Soffer A., Staubach W.: Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part I. Trans. Amer. Math. Soc. 362(1), 19–52 (2010)

Schlag W., Soffer A., Staubach W.: Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part II. Trans. Amer. Math. Soc. 362(1), 289–318 (2010)

Sigal I.M., Soffer A.: Long-range many-body scattering. Invent. Math 99, 115–143 (1990)

Sigal, I.M., Soffer, A.: Local decay and velocity bounds. Preprint, Princeton University, 1988

Sjöstrand, J.: Semiclassical Resonances Generated by Nondegenerate Critical Points. In: Pseudodifferential Operators (Oberwolfach, 1986), Lecture Notes in Math., Vol. 1256, Berlin: Springer-Verlag, 1987, pp. 402–429

Skibsted E.: Propagation estimates for N-body Schroedinger operators. Commun. Math. Phys 142(1), 67–98 (1991)

Tataru, D.: Local decay of waves on asymptotically flat stationary space-times, Preprint 2009, http://arXiv.org/abs/0910.5290v2 [math.AP], 2010

Tataru D., Tohaneanu M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. IMRN 2011(2), 248–292 (2011)

Tohaneanu, M.: Strichartz estimates on Kerr black hole backgrounds. Preprint http://arXiv.org/abs/0910.1545v1 [math.AP], 2009

Wald R.: General relativity. University of Chicago Press, Chicago, IL (1984)