On Open and Closed Convex Codes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Björner, A.: Topological methods. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 2, pp. 1819–1872. MIT Press, Cambridge (1995)
Curto, C., Gross, E., Jeffries, J., Morrison, K., Omar, M., Rosen, Z., Shiu, A., Youngs, N.: What makes a neural code convex? SIAM J. Appl. Algebra Geom. 1(1), 222–238 (2017)
Curto, C., Itskov, V., Veliz-Cuba, A., Youngs, N.: The neural ring: an algebraic tool for analyzing the intrinsic structure of neural codes. Bull. Math. Biol. 75(9), 1571–1611 (2013)
Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathematical Society, Providence, RI (2010)
Franke, M., Muthiah, S.: Every binary code can be realized by convex sets. Adv. Appl. Math. 99, 83–93 (2018)
Giusti, C., Itskov, V.: A no-go theorem for one-layer feedforward networks. Neural Comput. 26(11), 2527–2540 (2014)
Hatcher, A.: Notes on Introductory Point-Set Topology (2005). Lecture notes. https://www.math.cornell.edu/~hatcher/Top/TopNotes.pdf
Kalai, G.: Characterization of $$f$$-vectors of families of convex sets in $${\mathbf{R}}^d$$. I. Necessity of Eckhoff’s conditions. Isr. J. Math. 48(2–3), 175–195 (1984)
Kalai, G.: Characterization of $$f$$-vectors of families of convex sets in $${\mathbf{R}}^d$$. II. Sufficiency of Eckhoff’s conditions. J. Combin. Theory Ser. A 41(2), 167–188 (1986)
Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill Medical, New York (2000)
Lienkaemper, C., Shiu, A., Woodstock, Z.: Obstructions to convexity in neural codes. Adv. Appl. Math. 85, 31–59 (2017)
O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34(1), 171–175 (1971)
Tancer, M.: $$d$$-Representability of simplicial complexes of fixed dimension. J. Comput. Geom. 2(1), 183–188 (2011)