On Open and Closed Convex Codes

Discrete & Computational Geometry - Tập 61 Số 2 - Trang 247-270 - 2019
Joshua Cruz1, Chad Giusti2, Vladimir Itskov3, Bill Kronholm4
1Department of Mathematics, Duke University, Durham, USA
2Department of Mathematical Sciences, University of Delaware, Newark, USA
3Department of Mathematics, The Pennsylvania State University, State College, USA
4Department of Mathematics, Whittier College, Whittier, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Björner, A.: Topological methods. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 2, pp. 1819–1872. MIT Press, Cambridge (1995)

Curto, C., Gross, E., Jeffries, J., Morrison, K., Omar, M., Rosen, Z., Shiu, A., Youngs, N.: What makes a neural code convex? SIAM J. Appl. Algebra Geom. 1(1), 222–238 (2017)

Curto, C., Itskov, V., Veliz-Cuba, A., Youngs, N.: The neural ring: an algebraic tool for analyzing the intrinsic structure of neural codes. Bull. Math. Biol. 75(9), 1571–1611 (2013)

Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathematical Society, Providence, RI (2010)

Franke, M., Muthiah, S.: Every binary code can be realized by convex sets. Adv. Appl. Math. 99, 83–93 (2018)

Giusti, C., Itskov, V.: A no-go theorem for one-layer feedforward networks. Neural Comput. 26(11), 2527–2540 (2014)

Hatcher, A.: Notes on Introductory Point-Set Topology (2005). Lecture notes. https://www.math.cornell.edu/~hatcher/Top/TopNotes.pdf

Kalai, G.: Characterization of $$f$$-vectors of families of convex sets in $${\mathbf{R}}^d$$. I. Necessity of Eckhoff’s conditions. Isr. J. Math. 48(2–3), 175–195 (1984)

Kalai, G.: Characterization of $$f$$-vectors of families of convex sets in $${\mathbf{R}}^d$$. II. Sufficiency of Eckhoff’s conditions. J. Combin. Theory Ser. A 41(2), 167–188 (1986)

Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill Medical, New York (2000)

Lienkaemper, C., Shiu, A., Woodstock, Z.: Obstructions to convexity in neural codes. Adv. Appl. Math. 85, 31–59 (2017)

O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34(1), 171–175 (1971)

Tancer, M.: $$d$$-Representability of simplicial complexes of fixed dimension. J. Comput. Geom. 2(1), 183–188 (2011)

Yartsev, M.M., Ulanovsky, N.: Representation of three-dimensional space in the hippocampus of flying bats. Science 340(6130), 367–372 (2013)