On Noncompact Minimal Sets of the Geodesic Flow
Tóm tắt
We study nontrivial (i.e., containing more than one orbit) minimal sets of the geodesic flow on Γ\T
1ℍ2, where Γ is a nonelementary Fuchsian group. It is not difficult to prove that nontrivial compact minimal sets always exist. We establish the existence of nontrivial noncompact minimal sets in two cases: (1) Γ is a Schottky group of special kind generated by infinitely many hyperbolic elements, (2) Γ contains a parabolic element (in particular, Γ = PSL(2, ℤ)). This is done by geometric coding of geodesic orbits and constructing a minimal set for symbolic dynamics with infinite alphabet.
Tài liệu tham khảo
E. Artin, Ein mechanisches System mit quasiergodischen Bahnen. Abh. Math. Sem. Univ. Hamburg 3 (1924), 170–175.
T. Bedford, M. Keane, and C. Series, Ergodict heory, symbolic dynamics and hyperbolic spaces. Oxford Univ. Press, 1991.
B. H. Bowditch, Geometrical finiteness with variable curvature. Duke Math. J. 77 (1995), No. 1, 229–274. 64 F. DAL'BO and A. N. STARKOV
F. Dal'Bo and M. Peigne, Groupes du ping-pong et geodesiques fermees en courbure —1. Ann. Inst. Fourier 46 (1996), No. 3, 981–993.
F. Dal'Bo and A.N. Starkov, On a classification of limit points of infinitely generated Schottky groups. J. Dynam. Control Systems 6 (2000), No. 4, 561–578.
W. Gottschalk and G. Hedlund, Topological dynamics. Amer. Math. Soc. Colloq. Publ. 38 (1955).
H. M. Morse, Recurrent geodesics on surface of negative curvature. Trans. Amer. Math. Soc. 22 (1921), No. 1, 84–100.
A.N. Starkov, Fuchsian groups from the dynamical viewpoint. J. Dynam. Control Systems 1 (1995), No. 3, 427–445.
64-1, Minimal sets of homogeneous flows. Ergodic Theory Dynam. Systems 15 (1995), 361–377