On Modified Halpern and Tikhonov–Mann Iterations
Tóm tắt
We show that the asymptotic regularity and the strong convergence of the modified Halpern iteration due to T.-H. Kim and H.-K. Xu and studied further by A. Cuntavenapit and B. Panyanak and the Tikhonov–Mann iteration introduced by H. Cheval and L. Leuştean as a generalization of an iteration due to Y. Yao et al. that has recently been studied by Boţ et al. can be reduced to each other in general geodesic settings. This, in particular, gives a new proof of the convergence result in Boţ et al. together with a generalization from Hilbert to CAT(0) spaces. Moreover, quantitative rates of asymptotic regularity and metastability due to K. Schade and U. Kohlenbach can be adapted and transformed into rates for the Tikhonov–Mann iteration corresponding to recent quantitative results on the latter of H. Cheval, L. Leuştean and B. Dinis, P. Pinto, respectively. A transformation in the converse direction is also possible. We also obtain rates of asymptotic regularity of order O(1/n) for both the modified Halpern (and so in particular for the Halpern iteration) and the Tikhonov–Mann iteration in a general geodesic setting for a special choice of scalars.
Tài liệu tham khảo
Alexander, S., Kapovitch, V., Petrunin, A.: An Invitation to Alexandrov Geometry. CAT(0) Spaces. Springer (2019)
Ariza-Ruiz, D., Leuştean, L., Lopez-Acedo, G.: Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Am. Math. Soc. 366, 4299–4322 (2014)
Attouch, H.: Viscosity solutions of minimization problems. SIAM J. Optim. 6, 769–806 (1996)
Boţ, R.I., Csetnek, E.R., Meier, D.: Inducing strong convergence into the asymptotic behaviour of proximal splitting algorithms in Hilbert spaces. Optim. Methods Softw. 34, 489–514 (2019)
Bridson, M., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer (1999)
Busemann, H.: Spaces with nonpositive curvature. Acta Math. 80, 259–310 (1948)
Cheval, H., Leuştean, L.: Quadratic rates of asymptotic regularity for the Tikhonov–Mann iteration. Optim. Methods Softw. 37, 2225–2240 (2022)
Cheval, H., Leustean, L.: Linear rates of asymptotic regularity for Halpern-type iterations. arXiv:2303.05406 [math.OC] (2023)
Cuntavenapit, A., Panyanak, B.: Strong convergence of modified Halpern iterations in CAT(0) spaces. Fixed Point Theory Appl. 2011, 869458 (2011)
Dinis, B., Pinto, P.: On the convergence of algorithms with Tikhonov regularization terms. Optim. Lett. 15, 1263–1276 (2021)
Dinis, B., Pinto, P.: Strong convergence for the alternating Halpern-Mann iteration in CAT(0) spaces. arXiv:2112.14525 [math.FA] (2021), to appear in: SIAM Journal on Optimization
Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)
Kim, T.-H., Xu, H.-K.: Strong convergence of modified Mann iterations. Nonlinear Anal. 61, 51–60 (2005)
Kohlenbach, U.: Some logical metatheorems with applications in functional analysis. Trans. Am. Math. Soc. 357, 89–128 (2005)
Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer (2008)
Kohlenbach, U.: On quantitative versions of theorems due to F.E. Browder and R. Wittmann. Adv. Math. 226, 2764–2795 (2011)
Kohlenbach, U.: Proof-theoretic methods in nonlinear analysis. In: Sirakov, B., Ney de Souza, P., Viana, M. (eds.) Proc. ICM 2018, vol. 2, pp. 61–82. World Scientific (2019)
Kohlenbach, U., Leuştean, L.: Effective metastability of Halpern iterates in CAT(0) spaces. Adv. Math. 231, 2526–2556 (2012)
Kohlenbach, U., Leuştean, L.: Addendum to [17]. Adv. Math. 250, 650–651 (2014)
Kreisel, G.: On the interpretation of non-finitist proofs, part I. J. Symb. Log. 16, 241–267 (1951)
Kreisel, G.: On the interpretation of non-finitistproofs, part II: interpretation of number theory, applications. J. Symb. Log. 17, 43–58 (1952)
Leuştean, L., Pinto, P.: Rates of asymptotic regularity for the alternating Halpern-Mann iteration. arXiv:2206.02226 [math.OC] (2023)
Lehdili, N., Moudafi, A.: Combining the proximal algorithm and Tikhonov regularization. Optimization 37, 239–252 (1996)
Lieder, F.: On the convergence rate of the Halperm iteration. Optim. Lett. 15, 405–418 (2021)
Neumann, E.: Computational problems in metric fixed point theory and their Weihrauch degrees. Log. Method. Comput. Sci. 11, 44 (2015)
Papadopoulos, A.: Metric Spaces, Convexity and Nonpositive Curvature. European Mathematical Society (2005)
Sabach, S., Shtern, S.: First order method for solving convex bilevel optimization problems. SIAM J. Optim. 27, 640–660 (2017)
Schade, K., Kohlenbach, U.: Effective metastability for modified Halpern iterations in CAT(0) spaces. J. Fixed Point Theory Appl. 2012, 191 (2012)
Takahashi, W.: A convexity in metric space and nonexpansive mappings. I. Kodai Math. Semin. Rep. 22, 142–149 (1970)
Tao, T.: Soft analysis, hard analysis, and the finite convergence principle. Essay posted May 23, 2007. Appeared in: ‘T. Tao, Structure and Randomness: Pages from Year One of a Mathematical Blog. AMS, 298pp, (2008)
Tao, T.: Norm convergence of multiple ergodic averages for commuting transformations. Ergod. Theory Dyn. Syst. 28, 657–688 (2008)
Yao, Y., Zhou, H., Liou, Y.-C.: Strong convergence of a modified Krasnoselski–Mann iterative algorithm for non-expansive mappings. J. Appl. Math. Comput. 29, 383–389 (2009)
Xu, H.-K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004)