On Minimization of Upper Bound for the Convergence Rate of the QHSS Iteration Method

Communications on Applied Mathematics and Computation - Tập 1 Số 2 - Trang 263-282 - 2019
Wen-Ting Wu1
1State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing, 100190, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Axelsson, O., Bai, Z.-Z., Qiu, S.-X.: A class of nested iteration schemes for linear systems with a coefficient matrix with a dominant positive definite symmetric part. Numer. Algorithms 35, 351–372 (2004)

Bai, Z.-Z.: A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations. Adv. Comput. Math. 10, 169–186 (1999)

Bai, Z.-Z.: Modified block SSOR preconditioners for symmetric positive definite linear systems. Ann. Oper. Res. 103, 263–282 (2001)

Bai, Z.-Z.: On the convergence of additive and multiplicative splitting iterations for systems of linear equations. J. Comput. Appl. Math. 154, 195–214 (2003)

Bai, Z.-Z.: Splitting iteration methods for non-Hermitian positive definite systems of linear equations. Hokkaido Math. J. 36, 801–814 (2007)

Bai, Z.-Z.: On SSOR-like preconditioners for non-Hermitian positive definite matrices. Numer. Linear Algebra Appl. 23, 37–60 (2016)

Bai, Z.-Z.: Quasi-HSS iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts. Numer. Linear Algebra Appl. 25(e2116), 1–19 (2018)

Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27, 1–23 (2007)

Bai, Z.-Z., Golub, G.H., Li, C.-K.: Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices. SIAM J. Sci. Comput. 28, 583–603 (2006)

Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J. Sci. Comput. 26, 844–863 (2005)

Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)

Bai, Z.-Z., Golub, G.H., Ng, M.K.: On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations. Numer. Linear Algebra Appl. 14, 319–335 (2007)

Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)

Bai, Z.-Z., Huang, T.-Z.: On the convergence of the relaxation methods for positive definite linear systems. J. Comput. Math. 16, 527–538 (1998)

Bai, Z.-Z., Qiu, S.-X.: Splitting-MINRES methods for linear systems with the coefficient matrix with a dominant indefinite symmetric part. Math. Numer. Sinica 24, 113–128 (2002). (in Chinese)

Bai, Z.-Z., Zhang, S.-L.: A regularized conjugate gradient method for symmetric positive definite system of linear equations. J. Comput. Math. 20, 437–448 (2002)

Benzi, M.: A generalization of the Hermitian and skew-Hermitian splitting iteration. SIAM J. Matrix Anal. Appl. 31, 360–374 (2009)

Benzi, M., Gander, M.J., Golub, G.H.: Optimization of the Hermitian and skew-Hermitian splitting iteration for saddle-point problems. BIT 43, 881–900 (2003)

Benzi, M., Golub, G.H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26, 20–41 (2004)

Bertaccini, D., Golub, G.H., Serra Capizzano, S., Possio, C.T.: Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection–diffusion equation. Numer. Math. 99, 441–484 (2005)

Bey, J., Reusken, A.: On the convergence of basic iterative methods for convection–diffusion equations. Numer. Linear Algebra Appl. 1, 1–7 (1993)

Eiermann, M., Niethammer, W., Varga, R.S.: Acceleration of relaxation methods for non-Hermitian linear systems. SIAM J. Matrix Anal. Appl. 13, 979–991 (1992)

Eiermann, M., Varga, R.S.: Is the optimal $$\omega$$ ω best for the SOR iteration method? Linear Algebra Appl. 182, 257–277 (1993)

Golub, G.H., Vanderstraeten, D.: On the preconditioning of matrices with skew-symmetric splittings. Numer. Algorithms 25, 223–239 (2000)

Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

Greif, C., Varah, J.: Iterative solution of cyclically reduced systems arising from discretization of the three-dimensional convection–diffusion equation. SIAM J. Sci. Comput. 19, 1918–1940 (1998)

Greif, C., Varah, J.: Block stationary methods for nonsymmetric cyclically reduced systems arising from three-dimensional elliptic equations. SIAM J. Matrix Anal. Appl. 20, 1038–1059 (1999)

Huang, Y.-M.: A practical formula for computing optimal parameters in the HSS iteration methods. J. Comput. Appl. Math. 255, 142–149 (2014)

Huang, Y.-M.: On $$m$$ m -step Hermitian and skew-Hermitian splitting preconditioning methods. J. Engrg. Math. 93, 77–86 (2015)

Li, X.-Z., Varga, R.S.: A note on the SSOR and USSOR iterative methods applied to $$p$$ p -cyclic matrices. Numer. Math. 56, 109–121 (1989)

Lin, X.-L., Ng, M.K., Sun, H.-W.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl. 38, 1580–1614 (2017)

Neumaier, A., Varga, R.S.: Exact convergence and divergence domains for the symmetric successive overrelaxation iterative (SSOR) method applied to $$H$$ H -matrices. Linear Algebra Appl. 58, 261–272 (1984)

Neumann, M., Varga, R.S.: On the sharpness of some upper bounds for the spectral radii of S.O.R. iteration matrices. Numer. Math. 35, 69–79 (1980)

Niethammer, W., Varga, R.S.: Relaxation methods for non-Hermitian linear systems. Results Math. 16, 308–320 (1989)

Simoncini, V., Benzi, M.: Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems. SIAM J. Matrix Anal. Appl. 26, 377–389 (2004)

Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Inc., Englewood Cliffs (1962)

Wang, C.-L., Bai, Z.-Z.: Sufficient conditions for the convergent splittings of non-Hermitian positive definite matrices. Linear Algebra Appl. 330, 215–218 (2001)

Wu, S.-L.: Several variants of the Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems. Numer. Linear Algebra Appl. 22, 338–356 (2015)

Yang, A.-L., An, J., Wu, Y.-J.: A generalized preconditioned HSS method for non-Hermitian positive definite linear systems. Appl. Math. Comput. 216, 1715–1722 (2010)