On Kippenhahn curves and higher-rank numerical ranges of some matrices
Tài liệu tham khảo
Adam, 2018, Elliptical higher rank numerical range of some Toeplitz matrices, Linear Algebra Appl., 549, 256, 10.1016/j.laa.2018.03.024
Bebiano
Brown, 2004, On flat portions on the boundary of the numerical range, Linear Algebra Appl., 390, 75, 10.1016/j.laa.2004.04.009
Brown, 2004, On matrices with elliptical numerical ranges, Linear Multilinear Algebra, 52, 177, 10.1080/0308108031000112589
Choi, 2007, Higher-rank numerical ranges of unitary and normal matrices, Oper. Matrices, 1, 409, 10.7153/oam-01-24
Choi, 2006, Higher-rank numerical ranges and compression problems, Linear Algebra Appl., 418, 828, 10.1016/j.laa.2006.03.019
Daepp, 2018, Finding Ellipses, vol. 34
Gaaya, 2012, On the higher rank numerical range of the shift operator, J. Math. Sci. Adv. Appl., 13, 1
Gover, 1994, The eigenproblem of a tridiagonal 2-Toeplitz matrix, Linear Algebra Appl., 197–198, 63, 10.1016/0024-3795(94)90481-2
Horn, 1994
Jonckheere, 1998, Differential topology of numerical range, Linear Algebra Appl., 279, 227, 10.1016/S0024-3795(98)00021-4
Keeler, 1997, The numerical range of 3×3 matrices, Linear Algebra Appl., 252, 115, 10.1016/0024-3795(95)00674-5
Kippenhahn, 1951, Über den Wertevorrat einer Matrix, Math. Nachr., 6, 193, 10.1002/mana.19510060306
Kippenhahn, 2008, On the numerical range of a matrix, Linear Multilinear Algebra, 56, 185
Li, 2008, Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations, Proc. Am. Math. Soc., 136, 3013, 10.1090/S0002-9939-08-09536-1
Woerdeman, 2008, The higher rank numerical range is convex, Linear Multilinear Algebra, 56, 65, 10.1080/03081080701352211