On Kippenhahn curves and higher-rank numerical ranges of some matrices

Linear Algebra and Its Applications - Tập 629 - Trang 246-257 - 2021
Natália Bebiano1, Joáo da Providéncia2, Ilya M. Spitkovsky3
1Departamento de Matemática, Universidade da Coimbra, Portugal
2Departamento de Física, Universidade da Coimbra, Portugal
3Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates

Tài liệu tham khảo

Adam, 2018, Elliptical higher rank numerical range of some Toeplitz matrices, Linear Algebra Appl., 549, 256, 10.1016/j.laa.2018.03.024 Bebiano Brown, 2004, On flat portions on the boundary of the numerical range, Linear Algebra Appl., 390, 75, 10.1016/j.laa.2004.04.009 Brown, 2004, On matrices with elliptical numerical ranges, Linear Multilinear Algebra, 52, 177, 10.1080/0308108031000112589 Choi, 2007, Higher-rank numerical ranges of unitary and normal matrices, Oper. Matrices, 1, 409, 10.7153/oam-01-24 Choi, 2006, Higher-rank numerical ranges and compression problems, Linear Algebra Appl., 418, 828, 10.1016/j.laa.2006.03.019 Daepp, 2018, Finding Ellipses, vol. 34 Gaaya, 2012, On the higher rank numerical range of the shift operator, J. Math. Sci. Adv. Appl., 13, 1 Gover, 1994, The eigenproblem of a tridiagonal 2-Toeplitz matrix, Linear Algebra Appl., 197–198, 63, 10.1016/0024-3795(94)90481-2 Horn, 1994 Jonckheere, 1998, Differential topology of numerical range, Linear Algebra Appl., 279, 227, 10.1016/S0024-3795(98)00021-4 Keeler, 1997, The numerical range of 3×3 matrices, Linear Algebra Appl., 252, 115, 10.1016/0024-3795(95)00674-5 Kippenhahn, 1951, Über den Wertevorrat einer Matrix, Math. Nachr., 6, 193, 10.1002/mana.19510060306 Kippenhahn, 2008, On the numerical range of a matrix, Linear Multilinear Algebra, 56, 185 Li, 2008, Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations, Proc. Am. Math. Soc., 136, 3013, 10.1090/S0002-9939-08-09536-1 Woerdeman, 2008, The higher rank numerical range is convex, Linear Multilinear Algebra, 56, 65, 10.1080/03081080701352211