On K-theoretic invariants of semigroup C*-algebras attached to number fields
Tài liệu tham khảo
Bost, 1995, Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (N.S.), 1, 411, 10.1007/BF01589495
Bourbaki, 2006, Algèbre commutative, 10.1007/978-3-540-33976-2
Cornelissen
Cuntz, 2013, C*-algebras of Toeplitz type associated with algebraic number fields, Math. Ann., 355, 1383, 10.1007/s00208-012-0826-9
Cuntz
Cuntz, 2013, On the K-theory of crossed products by automorphic semigroup actions, Q. J. Math., 64, 747, 10.1093/qmath/hat021
Cuntz, 2010, The regular C*-algebra of an integral domain, vol. 11, 149
Cuntz, 2011, C*-algebras associated with integral domains and crossed products by actions on adele spaces, J. Noncommut. Geom., 5, 1, 10.4171/JNCG/68
Cuntz, 2012, Erratum to “C*-algebras associated with integral domains and crossed products by actions on adele spaces”, J. Noncommut. Geom., 6, 819, 10.4171/JNCG/107
de Smit, 1994, Zeta functions do not determine class numbers, Bull. Amer. Math. Soc. (N.S.), 31, 213, 10.1090/S0273-0979-1994-00520-8
Echterhoff, 2013, The primitive ideal space of the C*-algebra of the affine semigroup of algebraic integers, Math. Proc. Cambridge Philos. Soc., 154, 119, 10.1017/S0305004112000485
Ha, 2005, Bost–Connes–Marcolli systems for Shimura varieties. I. Definitions and formal analytic properties, Int. Math. Res. Pap. IMRP, 2005, 237, 10.1155/IMRP.2005.237
Kirchberg, 2000, Das nicht-kommutative Michael-Auswahlprinzip und die Klassifikation nicht-einfacher Algebren, 92
Laca, 2009, On Bost–Connes type systems for number fields, J. Number Theory, 129, 325, 10.1016/j.jnt.2008.09.008
Laca, 2011, Type III1 equilibrium states of the Toeplitz algebra of the affine semigroup over the natural numbers, J. Funct. Anal., 261, 169, 10.1016/j.jfa.2011.03.009
Laca, 2010, Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers, Adv. Math., 225, 643, 10.1016/j.aim.2010.03.007
Li, 2012, Semigroup C*-algebras and amenability of semigroups, J. Funct. Anal., 262, 4302, 10.1016/j.jfa.2012.02.020
Li, 2013, Nuclearity of semigroup C*-algebras and the connection to amenability, Adv. Math., 244, 626, 10.1016/j.aim.2013.05.016
Li, 2012, K-theory for ring C*-algebras – the case of number fields with higher roots of unity, J. Topol. Anal., 4, 449, 10.1142/S1793525312500203
Meyer, 2012, C*-algebras over topological spaces: filtrated K-theory, Canad. J. Math., 64, 368, 10.4153/CJM-2011-061-x
Neukirch, 1999, Algebraic Number Theory, 10.1007/978-3-662-03983-0
Norling, 2014, Inverse semigroup C*-algebras associated with left cancellative semigroups, Proc. Edinb. Math. Soc., 57, 533, 10.1017/S0013091513000540
Pasnicu, 2007, Purely infinite C*-algebras of real rank zero, J. Reine Angew. Math., 642, 51
Perlis, 1977, On the equation ζK(s)=ζK′(s), J. Number Theory, 9, 342, 10.1016/0022-314X(77)90070-1
Perlis, 1995, A new characterization of arithmetic equivalence, J. Number Theory, 53, 300, 10.1006/jnth.1995.1092
Valette, 2002