On K�hler-Einstein metrics on certain K�hler manifolds withC 1 (M)>0

Ганг Тиан1
1Department of Mathematics, University of California, La Jolla, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aubin, T.: Réduction du cas positif de l'equation de Monge-Ampére sur les varietés Kählériennes compactes à la démonstration dúne inégalité. J. Funct. Anal.57, 143?153 (1984)

Bombieri, E.: Addendum to my paper, Algebraic values of meromorphic maps. Invent. Math.11, 163?166 (1970)

Calabi, E.: The space of Kähler metrics. Proc. Int. Congress Math. Amsterdam2, 206?207 (1954)

Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin Heidelberg New York: Springer 1977

Griffith, P., Harris, J.: Principles of Algebraic Geometry Wiley, New York, 1978

Hömander, L.: An introduction to complex analysis in several variables. Van Nostrand, Princeton, NJ, 1973

Croke, C.B.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. Ec. Norm. Super, 4e série13, 419?435 (1980)

Li, P.: On the Sobolev constant and thep-spectrum of a compact Riemannian manifold. Ann. Sci. Ec. Norm. Super, 43 série,13, 451?469 (1980)

Schoen, R.: Conformation deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geo.20, 479?496 (1984)

Scaks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math.113, 1?24 (1981)

Skoda, H.: Sous-ensembles analytiques d'ordre fini on infini dans ? n . Bull. Soc. Math. France,100, 353?408 (1972)

Tian, G.: On the existence of solutions of a class of Monge-Ampére equations. Acta. Math. Sinica (to appear)

Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation,I *. Commun. Pure Appl. Math.31, 339?411 (1978)