On Ising Model with Four Competing Interactions on Cayley Tree
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, London (1982)
Bleher, P., Ruiz, J., Schonmann, R.H., Schlosman, S., Zagrebnov, V.: Rigidity of the critical phases on a Cayley tree. Moscow Math. J. 1, 345–363 (2001)
Bleher, P., Ruiz, J., Zagrebnov, V.: On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice. J. Statist. Phys. 79, 473–482 (1995)
Bleher, P., Ganikhodjaev, N.: On the phases of the Ising model on the Bethe lattice. Theory Probab. Appl. 35, 216–227 (1990)
Ganikhodjaev, N.N.: Group representations and automophisms of the Cayley tree. Dokl. Akad. Nauk. Rep. Uzbekistan 4, 3–5 (1994) (Russian)
Ganikhodjaev (Ganikhodzhaev), N.N., Rozikov, U.A.: A description of periodic extremal Gibbs measures on some lattice models on the Cayley tree. Theor. Math. Phys. 111, 480–486 (1997)
Ganikhodjaev, N.N.: Exact solution of an Ising model on the Cayley tree with competing ternary and binary interactions. Theor. Math. Phys. 130(3), 419–424 (2002)
Ganikhodjaev, N.N., Pah, C.H., Wahiddin, M.R.B.: Exact solution of an Ising model with competing interactions on a Cayley tree. J. Phys. A 36, 4283–4289 (2003)
Ganikhodjaev, N.N., Pah, C.H., Wahiddin, M.R.B.: An Ising model with three competing interactions on a Cayley tree. J. Math. Phys. 45, 3645–3658 (2004)
Georgii, H.-O.: Gibbs Measures and Phase Transitions. Walte de Gruyter, Berlin (1998)
Katsura, S., Takizawa, M.: Bethe lattice and the Bethe approximation. Prog. Theor. Phys. 51, 82–98 (1974)
Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York (1961)
Monroe, J.L.: Phase diagrams of Ising models on Husime trees II. J. Stat. Phys. 67, 1185–2000 (1992)
Monroe, J.L.: A new criterion for the location of phase transitions for spin system on a recursive lattice. Phys. Lett. A 188, 80–84 (1994)
Mukhamedov, F.M., Rozikov, U.A.: On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras. J. Statist. Phys. 114, 825–848 (2004)
Rozikov, U.A.: Partition structures of the group representation of the Cayley tree into cosets by finite-index normal subgroups and their applications to description of periodic Gibbs distributions. Theor. Math. Phys. 112, 929–933 (1997)
Rozikov, U.A.: Description uncountable number of Gibbs measures for inhomogeneous Ising model. Theor. Math. Phys. 118, 95–104 (1999)
Shiryaev, A.N.: Probability. Nauka, Moscow (1980)
Sinai, Y.G.: Theory of Phase Transitions: Rigorous Results. Pergamon, Oxford (1982)