On Interval Systems [x] = [A][x] + [b] and the Powers of Interval Matrices in Complex Interval Arithmetics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alefeld, G.: Intervallrechnung über den komplexen Zahlen und einige Anwendungen, Dissertation, Universität Karlsruhe, 1968.
Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New York, 1983.
Alefeld, G. and Mayer, G.: Enclosing Solutions of Singular Interval Systems Iteratively, Reliable Computing 11 (3) (2005), pp. 165–190.
Arndt, H.-R.: On the Convergence of the Total Step Method in Interval Analysis, in preparation.
Arndt, H.-R.: Zur Lösungseinschließung bei linearen Gleichungssystemen mit ungenauen Eingangsdaten, Ph.D. thesis, University Rostock, 2005.
Arndt, H.-R. and Mayer, G.: New Criteria for the Semiconvergence of Interval Matrices, SIAM J. Matrix Anal. Appl. 27 (3) (2005), pp. 689–711.
Arndt, H.-R. and Mayer, G.: On the Semi-Convergence of Interval Matrices, Linear Algebra Appl. 393 (2004), pp. 15–37.
Arndt, H.-R. and Mayer, G.: On the Solutions of the Interval System [x] = [A][x] + [b], Reliable Computing 11 (2) (2005), pp. 87–103.
Berman, A. and Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics 9, SIAM, Philadelphia, 1994.
Horn, R. A. and Johnson, C. R.: Matrix Analysis, Cambridge University Press, Cambridge, 1994.
Mayer, G.: On the Convergence of Powers of Interval Matrices, Linear Algebra Appl. 58 (1984), pp. 201–216.
Mayer, G.: On the Convergence of Powers of Interval Matrices (2), Numer. Math. 46 (1985), pp. 69–83.
Mayer, G. andWarnke, I.: On the Solutions of the Interval Function [f]([x]) = [A][x]+[b], Linear Algebra Appl. 363 (2003), pp. 201–216.
Mayer, O.: Über die in der Intervallrechnung auftretenden Räume und einige Anwendungen, Dissertation, Universität Karlsruhe, 1968.
Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.