On Idempotent and Hyperassociative Structures

Yu. Movsisyan1,2, M. Yolchyan2
1University of Bergen, Bergen, Norway
2Yerevan State University, Yerevan, Armenia

Tóm tắt

The paper is devoted to the study of the structures of idempotent and hyperassociative algebras. The goal is to explain new methodological developments in algebras, which will be of growing importance in the second order logic. Our results extend the corresponding results on semigroups too.

Từ khóa


Tài liệu tham khảo

S. Burris and H. P. Sanakappanavar, A Course in Universal Algebra (Springer, Berlin, 1981).

A. Church, Introduction to Mathematical Logic (Princeton Univ. Press, Princeton, 1956), Vol. 1.

A. I. Mal’tsev, “Some questions of the theory of classes of models,” in Proceedings of the 4th All-Union Mathematical Congress (1963), Vol. 1, pp. 169–198.

A. I. Mal’tsev, Algebraic Systems (Springer, Berlin, Heidelberg, New York, 1973).

Yu. M. Movsisyan, Introduction to the Theory of Algebras with Hyperidentities (Yerevan Gos. Univ., Yerevan, 1986) [in Russian].

Yu. M. Movsisyan, Hyperidentities and Hypervarieties in Algebras (Yerevan Gos. Univ., Yerevan, 1990) [in Russian].

Yu. M. Movsisyan, “Hyperidentities in algebras and varieties,” Russ. Math. Surv. 53, 57–108 (1998).

Yu. M. Movsisyan, “Hyperidentities and related concepts. I,” Armen. J. Math. 2, 146–222 (2017).

Yu. M. Movsisyan, “Hyperidentities and related concepts. II,” Armen. J. Math. 4, 1–85 (2018).

V. A. Artamonov, V. N. Saliy, L. A. Skornyakov, L. N. Shevrin, and E. G. Shulgeifer, General Algebra (Moscow, 1991), Vol. 2 [in Russian].

A. G. Kurosh, Lectures on General Algebra (Chelsea, New York, 1963).

V. N. Saliy, “Idempotent semigroups with the transitive commutativity property,” Russ. Math. (Iz. VUZ) 46(1), 62–67 (2002).

E. S. Lyapin, Semigroups (Moscow, 1960) [in Russian].