On Ideals of Quasi-Commutative Semigroups

Bulletin of the Iranian Mathematical Society - Tập 45 - Trang 447-453 - 2018
Mohammad Reza Sorouhesh1
1Department of Mathematics, Islamic Azad University, South Tehran Branch, Tehran, Iran

Tóm tắt

The aim of this note is to use some structural properties of quasi-commutative semigroups to get information on their ideals.

Tài liệu tham khảo

Arajo, J., et al.: Between primitive and 2-transitive: synchronization and its friends. EMS Surv. Math. Sci. 4(2), 101–184 (2017). https://doi.org/10.4171/EMSS/4-2-1 Bosak, J.: On radicals of semigroups. Matematický časopis 18(3), 204–212 (1968) Brown, K.S.: Semigroups, rings, and Markov chains. J. Theor. Probab. 13(3), 871–938 (2000) Chacron, M., Thierrin, G.: \(\sigma -\)reflexive semigroups and rings. Can. Math. Bull. 15(2), 185–188 (1972) Cherubini, A., Varisco, A.: Quasi-commutative semigroups and \(\sigma \)-reflexive semigroups. Semigroup Forum 19, 313–321 (1980) Chrislock, J.L.: On medial semigroups. J. Algebra 12, 1–9 (1969) Clifford, A.H., Preston, G.B.: The algebraic theory of semigroups I. Amer. Math. Soc., Providence (1961) Eilenberg, S.: Automata, languages, and machines, vol. A. Academic, Boston (1974) Howie, J.M.: An introduction to semigroup theory. Academic, Boston (1976) Kmet, F.: On radicals in semigroups. Math. Slovaca 32, 183–188 (1982) Kmet, F.: Quasi-commutative weakly primary semigroups. Math. Slovaca 32(2), 183–188 (1982) Lal, H.: Quasi-commutative primary semigroups. Matematički Vesnik 12(59), 271–278 (1975) Lal, H.: Radicals in quasi-commutative semigroups. Matematický časopis 25(3), 287–288 (1975) Lawson, M.V.: Finite Automata. Chapman & Hall/CRC, Boca Raton (2003) Mukherjee, N.P.: Quasi-commutative semigroups I. Czechoslovak Math. J. 22(3), 449–453 (1972) Nagore, C.S.H.: Quasi-commutative Q semigroups. Semigroup Forum 15(1), 189–193 (1977) Pin, J.-E.: Mathematical Foundations of Automata Theory (2012). https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf Pin, J.-E.: Logic, semigroups and automata on words. Ann. Math. Artif. Intell. 16(1), 343–384 (1996) Sorouhesh, M.R., Dosstie, H.: Quasi-commutative semigroups of finite order related to Hamiltonian groups. Bull. Korean Math. Soc. 52(1), 239–246 (2015) The GAP Group.: GAP-Groups, Algorithms and programming, Version 4.8.8 (2017). http://www.gap-system.org