On Higher-Order Sensitivity Analysis in Nonsmooth Vector Optimization
Tóm tắt
We propose the notion of higher-order radial-contingent derivative of a set-valued map, develop some calculus rules and use them directly to obtain optimality conditions for several particular optimization problems. Then we employ this derivative together with contingent-type derivatives to analyze sensitivity for nonsmooth vector optimization. Properties of higher-order contingent-type derivatives of the perturbation and weak perturbation maps of a parameterized optimization problem are obtained.
Tài liệu tham khảo
Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press, New York (1983)
Tanino, T.: Sensitivity analysis in multiobjective optimization. J. Optim. Theory Appl. 56, 479–499 (1988)
Tanino, T.: Stability and sensitivity analysis in convex vector optimization. SIAM J. Control Optim. 26, 521–536 (1988)
Shi, D.S.: Contingent derivative of the perturbation map in multiobjective optimization. J. Optim. Theory Appl. 70, 385–396 (1991)
Kuk, H., Tanino, T., Tanaka, M.: Sensitivity analysis in vector optimization. J. Optim. Theory Appl. 89, 713–730 (1996)
Shi, D.S.: Sensitivity analysis in convex vector optimization. J. Optim. Theory Appl. 77, 145–159 (1993)
Kuk, H., Tanino, T., Tanaka, M.: Sensitivity analysis in parameterized convex vector optimization. J. Math. Anal. Appl. 202, 511–522 (1996)
Levy, A.B., Rockafellar, R.T.: Sensitivity analysis of solutions to generalized equations. Trans. Am. Math. Soc. 345, 661–671 (1994)
Levy, A.B.: Lipschitzian multifunctions and a Lipschitzian inverse mapping theorem. Math. Oper. Res. 26, 105–118 (2001)
Rockafellar, R.T.: Proto-differentiability of set-valued mappings and its applications in optimization. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6, 449–482 (1989)
Huy, N.Q., Lee, G.M.: Sensitivity of solutions to a parametric generalized equation. Set-Valued Anal. 16, 805–820 (2008)
Lee, G.M., Huy, N.Q.: On proto-differentiability of generalized perturbation maps. J. Math. Anal. Appl. 324, 1297–1309 (2006)
Mordukhovich, B.S.: Coderivetive analysis of variational systems. J. Glob. Optim. 28, 347–362 (2004)
Levy, A.B., Mordukhovich, B.S.: Coderivatives in parametric optimization. Math. Program., Ser. A 99, 311–327 (2004)
Chuong, T.D., Yao, J.C.: Generalized Clarke epiderivatives of Parametric vector optimization problems. J. Optim. Theory Appl. 146, 77–94 (2010)
Sun, X.K., Li, S.J.: Lower Studniarski derivative of the perturbation map in parameterized vector optimization. Optim. Lett. 5, 601–614 (2011)
Anh, L.N.H., Khanh, P.Q.: Variational sets of perturbation maps and applications to sensitivity analysis for constrained vector optimization. J. Optim. Theory Appl. 158, 363–384 (2013)
Studniarski, M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 25, 1044–1049 (1986)
Khanh, P.Q., Tuan, N.D.: Variational sets of multivalued mappings and a unified study of optimality conditions. J. Optim. Theory Appl. 139, 45–67 (2008)
Khanh, P.Q., Tuan, N.D.: Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization. J. Optim. Theory Appl. 139, 243–261 (2008)
Anh, N.L.H., Khanh, P.Q., Tung, L.T.: Variational sets: calculus and applications to nonsmooth vector optimization. Nonlinear Anal. TMA 74, 2358–2379 (2011)
Luc, D.T.: Contingent derivatives of set-valued maps and applications to vector optimization. Math. Program. 50, 99–111 (1991)
Anh, L.N.H., Khanh, P.Q.: Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives. J. Glob. Optim. 56, 519–536 (2013)
Ha, T.D.X.: Optimality conditions for several types of efficient solutions of set-valued optimization problems. In: Pardalos, P., Rassis, T.M., Khan, A.A. (eds.) Nonlinear Analysis and Variational Problems, pp. 305–324. Springer, Berlin (2009)
Anh, N.L.H., Khanh, P.Q., Tung, L.T.: Higher-order radial derivatives and optimality conditions in nonsmooth vector optimization. Nonlinear Anal. TMA 74, 7365–7379 (2011)
Khanh, P.Q.: Proper solutions of vector optimization problems. J. Optim. Theory Appl. 74, 105–130 (1992)
Guerraggio, A., Molho, E., Zaffaroni, A.: On the notion of proper efficiency in vector optimization. J. Optim. Theory Appl. 82, 1–21 (1994)
Makarov, E.K., Rachkovski, N.N.: Unified representation of proper efficiency by means of dilating cones. J. Optim. Theory Appl. 101, 141–165 (1999)
Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Berlin (1990)
Penot, J.-P.: Differentiability of relations and differential stability of perturbed optimization problems. SIAM J. Control Optim. 22, 529–551 (1984)
Taa, A.: Necessary and sufficient conditions for multiobjective optimization problems. Optimization 36, 97–104 (1996)
Jahn, J., Khan, A.A.: Some calculus rules for contingent epiderivatives. Optimization 52, 113–125 (2003)
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, 3rd edn. Springer, Berlin (2009)