On Gradient Shrinking and Expanding Kähler–Ricci Solitons

Mediterranean Journal of Mathematics - Tập 19 - Trang 1-12 - 2021
Liangdi Zhang1,2
1Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing, China
2Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

Tóm tắt

We prove that a compact gradient shrinking Kähler–Ricci soliton with subharmonic scalar curvature is Kähler–Einstein. Moreover, we show that a complete noncompact gradient shrinking Kähler–Ricci soliton with constant scalar curvature and nonnegative fourth-order divergence curvature (or Bochner) tensor is rigid. We also derive a classification theorem for complete noncompact gradient expanding Kähler–Ricci solitons.

Tài liệu tham khảo

Cao, H.D.: Recent progress on Ricci solitons, Recent Advances in Geometric Analysis, pp. 1–38, Adv. Lect. Math. (ALM), vol. 11. Int. Press, Somerville (2010) Cao, H.D., Chen, Q.: On locally conformally flat gradient steady Ricci solitons. Tran. Am. Math. Soc. 364, 2377–2391 (2012) Cao, H.D., Chen, Q.: On Bach-flat gradient shrinking Ricci solitons. Duke Math. J. 162(6), 1149–1169 (2013) Cao, H.D., Catino, G., Chen, Q., Mantegazza, C., Mazzieri, L.: Bach-flat gradient steady Ricci solitons. Calc. Var. 49, 125–138 (2014) Cao, H.D., Zhou, D.: On complete gradient shrinking Ricci solitons. J. Differ. Geom. 85(2), 175–186 (2010) Cao, H.D., Zhu, X.P.: A complete proof of the Poincare and geometrization conjectures—application of the Hamilton–Perelman theory of the Ricci flow. Asian J. Math. 10(2), 165–492 (2016) Cao, X., Wang, B., Zhang, Z.: On locally conformally flat gradient shrinking Ricci solitons. Commun. Contemp. Math. 13(2), 269–282 (2011) Catino, G., Mastrolia, P., Monticelli, D.D.: Gradient Ricci solitons with vanishing conditions on Weyl. J. Math. Pure Appl. 108(1), 1–13 (2017) Chen, B.L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 86(2), 362–382 (2009) Chen, Q., Zhu, M.: On rigidity of gradient Kähler–Ricci solitons with harmonic Bochner tensor. Proc. Am. Math. Soc. 140(140), 4017–4025 (2012) Eminenti, M., La Nave, G., Mantegazza, C.: Ricci solitons: the equation point of view. Manuscr. Math. 127, 345–367 (2008) Fernández-López, M., García-Río, E.: On gradient Ricci solitons with constant scalar curvature. Proc. Am. Math. Soc. 144(1), 369–378 (2016) Petersen, P., Wylie, W.: Rigidity of gradient Ricci solitons. Pac. J. Math. 241(2), 329–345 (2009) Petersen, P., Wylie, W.: On the classification of gradient Ricci solitons. Geom. Topol. 14(4), 2277–2300 (2010) Su, Y., Zhang, K.: On the Kähler–Ricci solitons with vanishing Bochner–Weyl tensor. Acta Math. Sci. 32B(3), 1239–1244 (2012) Yang, F., Fang, S., Zhang, L.: Classification of gradient expanding and steady Ricci solitons. Pac. J. Math. 301(1), 371–384 (2019) Yang, F., Wang, Z., Zhang, L.: Classification of gradient shrinking Ricci solitons with bounded Ricci curvature. Differ. Geom. Appl. 71, 101637 (2020) Yang, F., Zhang, L.: Classification of gradient Kähler–Ricci solitons with vanishing \(B\)-tensor. J. Geom. Phys. 147, 103535 (2020) Zhang, Z.H.: Gadient shrinking solitons with vanishing Weyl tensor. Pac. J. Math. 242(1), 189–200 (2009)