On Gardner’s Conjecture
Tóm tắt
Gardner conjectured that if two bounded measurable sets A, B ⊂ ℝn are equidecomposable by a set of isometries Γ generating an amenable group then A and B admit a measurable equidecomposition by all isometries. Cieśla and Sabok asked if there is a measurable equidecomposition using isometries only in the group generated by Γ. We answer this question negatively.
Tài liệu tham khảo
S. Banach and A. Tarski: Sur la décomposition des ensembles de points en parties respectivement congruentes, Fund. math 6.1 (1924), 244–277.
T. Cieśla and M. Sabok: Measurable Hall’s theorem for actions of Abelian groups, arXiv:1903.02987 (2019).
R. J. Gardner: Measure theory and some problems in geometry, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 51–72.
L. Grabowski, A. Máthá and O. Pikhurko: Measurable circle squaring, Annals of Mathematics (2017), 671–710.
A. S. Kechris and A. S. Marks: Descriptive graph combinatorics, 2015, preprint.
M. Laczkovich: Closed sets without measurable matching, Proceedings of the American Mathematical Society 103.3 (1988), 894–896.
M. Laczkovich: Equidecomposability and discrepancy; a solution of Tarski’s circle-squaring problem, Journal für die reine und angewandte Mathematik 404 (1990), 77–117.
A. S. Marks and S. T. Unger: Borel circle squaring, Annals of Mathematics 186 (2017), 581–605.
A. Máthé: Measurable equidecompositions, Proceedings of the International Congress of Mathematicians, 2, 2018.
J. Mycielski: Finitely additive invariant measures. I, in: Colloquium Mathematicum, Vol. 42, No. 1, (1979) 309–318, Institute of Mathematics Polish Academy of Sciences.
J. von Neumann: Zur allgemeinen Theorie des Masses, Fundamenta Mathematicae 13.1 (1929), 73–116.
A. Tarski: Probléme 38, Fundamenta Mathematicae 7 (1925), 381.
G. Tomkowicz and S. Wagon: The Banach-Tarski Paradox, Vol. 163, Cambridge University Press, 2016.