On Fractional Semilinear Nonlocal Initial Value Problem with State Dependent Delay

Md Mansur Alam1, Shruti Dubey1
1Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agarwal, R. P., Andrade, B. de., Siracusa, G.: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 62(3), 1143–1149 (2011)

Belmekki, M., Mekhalfi, K.: On fractional differential equations with state-dependent delay via Kuratowski measure of noncompactness. Filomat 31(2), 451–460 (2017)

Burlică, M.D., Necula, M., Roşu, D., Vrabie, I.I.: Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL (2016)

Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40(1), 11–19 (1991)

Chang, Y.K., Kavitha, V., Arjunan, M.: Mallika: Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional order. Nonlinear Anal. 71(11), 5551–5559 (2009)

Darwish, M.A., Ntouyas, S.K.: Semilinear functional differential equations of fractional order with state-dependent delay. Electron. J. Differ. Equ. 2009(38), 1–10 (2009)

dos Santos, J.P.C., Cuevas, C., de Andrade, B.: Existence results for a fractional equation with state-dependent delay. Adv. Differ. Equ. 2011(642013), 1–15 (2011)

Du, M., Wang, Z., Hu, H.: Measuring memory with the order of fractional derivative. Sci. Rep. 3(1), 1–3 (2013)

Dubey, S., Sharma, M.: Solutions to fractional functional differential equations with nonlocal conditions. Fract. Calc. Appl. Anal. 17(3), 654–673 (2014)

Dubey, S.A., Bahuguna, D.: Existence and regularity of solutions to nonlocal retarded differential equations. Appl. Math. Comput. 215(7), 2413–2424 (2009)

Ezzinbi, K., Fu, X., Hilal, K.: Existence and regularity in the $$\alpha$$-norm for some neutral partial differential equations with nonlocal conditions. Nonlinear Anal. 67(5), 1613–1622 (2007)

Fu, X., Huang, R.: Existence of solutions for neutral integro-differential equations with state-dependent delay. Appl. Math. Comput. 224, 743–759 (2013)

Fujita, H., Morimoto, H.: On fractional powers of the Stokes operator. Proc. Japan Acad. 46, 1141–1143 (1970)

Giga, Y.: Weak and strong solutions of the Navier-Stokes initial value problem. Publ. Res. Inst. Math. Sci. 19(3), 887–910 (1983)

Guswanto, B.H.: Fractional nonlinear evolution equations with sectorial linear operators. J. Fract. Calc. Appl. 10(1), 213–227 (2019)

Guswanto, B.H., Suzuki, T.: Existence and uniqueness of mild solutions for fractional semilinear differential equations. Electron. J. Differ. Equ. 2015(168), 1–16 (2015)

Hernández, E.: On abstract differential equations with state dependent non-local conditions. J. Math. Anal. Appl. 466(1), 408–425 (2018)

Hernández, E., Pierri, M., Wu, J.: $$C^{1+\alpha }$$-strict solutions and wellposedness of abstract differential equations with state dependent delay. J. Differ. Equ. 261(12), 6856–6882 (2016)

Hernández, E., Prokopczyk, A., Ladeira, L.: A note on partial functional differential equations with state-dependent delay. Nonlinear Anal. Real World Appl. 7(4), 510–519 (2006)

Hernández, E., Wu, J.: Existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay. Proc. Edinb. Math. Soc. (2) 62(3), 771–788 (2019)

Hernández, E., Wu, J., Fernandes, D.: Existence and uniqueness of solutions for abstract neutral differential equations with state-dependent delay. Appl. Math. Optim. 81(1), 89–111 (2020)

Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. ; Theory and applications of fractional differential equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam (2006)

Langlands, T. A. M., Henry, B. I. : Fractional chemotaxis diffusion equations. Phys. Rev. E (3) 81(5), 051102 (2010)

Li, C., LI, M.: Hölder regularity for abstract fractional cauchy problems with order in (0, 1). J. Appl. Math. Phys. 6(01), 310 (2018)

Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 77 (2000)

Sharma, M., Dubey, S.: Analysis of fractional functional differential equations of neutral type with nonlocal conditions. Differ. Equ. Dyn. Syst. 25(4), 499–517 (2017)

Sohr, H.: The Navier-Stokes equations. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2001. An elementary functional analytic approach, [2013 reprint of the 2001 original] [MR1928881]

Vrabie, I. I. : $$C_0$$-semigroups and applications, volume 191 of North-Holland Mathematics Studies. North-Holland Publishing Co. Amsterdam (2003)

Vrabie, I.I.: A class of semilinear delay differential equations with nonlocal initial conditions. Dyn. Partial Differ. Equ. 15(1), 45–60 (2018)

Wang, R.N., Xiao, T.J., Liang, J.: A note on the fractional Cauchy problems with nonlocal initial conditions. Appl. Math. Lett. 24(8), 1435–1442 (2011)

Wang, R.N., Yang, Y.H.: On the Cauchy problems of fractional evolution equations with nonlocal initial conditions. Results Math. 63(1–2), 15–30 (2013)

Zhang, X., Chen, P.: Fractional evolution equation nonlocal problems with noncompact semigroups. Opuscula Math. 36(1), 123–137 (2016)

Zhang, X., Huang, X., Liu, Z.: The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay. Nonlinear Anal. Hybrid Syst. 4(4), 775–781 (2010)