On Fractional Semilinear Nonlocal Initial Value Problem with State Dependent Delay
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agarwal, R. P., Andrade, B. de., Siracusa, G.: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 62(3), 1143–1149 (2011)
Belmekki, M., Mekhalfi, K.: On fractional differential equations with state-dependent delay via Kuratowski measure of noncompactness. Filomat 31(2), 451–460 (2017)
Burlică, M.D., Necula, M., Roşu, D., Vrabie, I.I.: Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL (2016)
Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40(1), 11–19 (1991)
Chang, Y.K., Kavitha, V., Arjunan, M.: Mallika: Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional order. Nonlinear Anal. 71(11), 5551–5559 (2009)
Darwish, M.A., Ntouyas, S.K.: Semilinear functional differential equations of fractional order with state-dependent delay. Electron. J. Differ. Equ. 2009(38), 1–10 (2009)
dos Santos, J.P.C., Cuevas, C., de Andrade, B.: Existence results for a fractional equation with state-dependent delay. Adv. Differ. Equ. 2011(642013), 1–15 (2011)
Du, M., Wang, Z., Hu, H.: Measuring memory with the order of fractional derivative. Sci. Rep. 3(1), 1–3 (2013)
Dubey, S., Sharma, M.: Solutions to fractional functional differential equations with nonlocal conditions. Fract. Calc. Appl. Anal. 17(3), 654–673 (2014)
Dubey, S.A., Bahuguna, D.: Existence and regularity of solutions to nonlocal retarded differential equations. Appl. Math. Comput. 215(7), 2413–2424 (2009)
Ezzinbi, K., Fu, X., Hilal, K.: Existence and regularity in the $$\alpha$$-norm for some neutral partial differential equations with nonlocal conditions. Nonlinear Anal. 67(5), 1613–1622 (2007)
Fu, X., Huang, R.: Existence of solutions for neutral integro-differential equations with state-dependent delay. Appl. Math. Comput. 224, 743–759 (2013)
Fujita, H., Morimoto, H.: On fractional powers of the Stokes operator. Proc. Japan Acad. 46, 1141–1143 (1970)
Giga, Y.: Weak and strong solutions of the Navier-Stokes initial value problem. Publ. Res. Inst. Math. Sci. 19(3), 887–910 (1983)
Guswanto, B.H.: Fractional nonlinear evolution equations with sectorial linear operators. J. Fract. Calc. Appl. 10(1), 213–227 (2019)
Guswanto, B.H., Suzuki, T.: Existence and uniqueness of mild solutions for fractional semilinear differential equations. Electron. J. Differ. Equ. 2015(168), 1–16 (2015)
Hernández, E.: On abstract differential equations with state dependent non-local conditions. J. Math. Anal. Appl. 466(1), 408–425 (2018)
Hernández, E., Pierri, M., Wu, J.: $$C^{1+\alpha }$$-strict solutions and wellposedness of abstract differential equations with state dependent delay. J. Differ. Equ. 261(12), 6856–6882 (2016)
Hernández, E., Prokopczyk, A., Ladeira, L.: A note on partial functional differential equations with state-dependent delay. Nonlinear Anal. Real World Appl. 7(4), 510–519 (2006)
Hernández, E., Wu, J.: Existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay. Proc. Edinb. Math. Soc. (2) 62(3), 771–788 (2019)
Hernández, E., Wu, J., Fernandes, D.: Existence and uniqueness of solutions for abstract neutral differential equations with state-dependent delay. Appl. Math. Optim. 81(1), 89–111 (2020)
Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. ; Theory and applications of fractional differential equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam (2006)
Langlands, T. A. M., Henry, B. I. : Fractional chemotaxis diffusion equations. Phys. Rev. E (3) 81(5), 051102 (2010)
Li, C., LI, M.: Hölder regularity for abstract fractional cauchy problems with order in (0, 1). J. Appl. Math. Phys. 6(01), 310 (2018)
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 77 (2000)
Sharma, M., Dubey, S.: Analysis of fractional functional differential equations of neutral type with nonlocal conditions. Differ. Equ. Dyn. Syst. 25(4), 499–517 (2017)
Sohr, H.: The Navier-Stokes equations. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2001. An elementary functional analytic approach, [2013 reprint of the 2001 original] [MR1928881]
Vrabie, I. I. : $$C_0$$-semigroups and applications, volume 191 of North-Holland Mathematics Studies. North-Holland Publishing Co. Amsterdam (2003)
Vrabie, I.I.: A class of semilinear delay differential equations with nonlocal initial conditions. Dyn. Partial Differ. Equ. 15(1), 45–60 (2018)
Wang, R.N., Xiao, T.J., Liang, J.: A note on the fractional Cauchy problems with nonlocal initial conditions. Appl. Math. Lett. 24(8), 1435–1442 (2011)
Wang, R.N., Yang, Y.H.: On the Cauchy problems of fractional evolution equations with nonlocal initial conditions. Results Math. 63(1–2), 15–30 (2013)
Zhang, X., Chen, P.: Fractional evolution equation nonlocal problems with noncompact semigroups. Opuscula Math. 36(1), 123–137 (2016)