On Excesses and Duality in Woven Frames

Elahe Agheshteh Moghaddam1, Ali Akbar Arefijamaal1
1Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran

Tóm tắt

Weaving frames in separable Hilbert spaces have been recently introduced by Bemrose et al. to deal with some problems in distributed signal processing and wireless sensor networks. In this paper, we study the notion of excess for woven frames and prove that any two frames in a separable Hilbert space that are woven have the same excess. We also show that every frame with a large class of duals is woven provided that its redundant elements have small enough norm. Also, we try to transfer the woven property from frames to their duals and vice versa. Finally, we look at which perturbations of dual frames preserve the woven property; moreover, it is shown that under some conditions, the canonical Parseval frame of two woven frames is also woven.

Tài liệu tham khảo

Aldroubi, A.: Portraits of frames. Proc. Am. Math. Soc. 123, 1661–1668 (1995) Ali, S.T., Antoine, J.P., Gazean, J.P.: Continous frames in Hilbert spaces. Ann. Phys. 222, 1–37 (1993) Arabyani-Neyshaburi, F., Arefijamaal, A.A.: Manufacturing pairs of woven frames applying duality principle on Hilbert spaces. Bull. Malays. Math. Sci. Soc. 44(1), 147–161 (2021) Arefijamaal, A., Zekaee, E.: Image processing by alternate dual Gabor frames. Bull. Iran. Math. Soc. 42(6), 1305–1314 (2016) Arefijamaal, A., Zekaee, E.: Signal processing by alternate dual Gabor frames. Appl. Comput. Harmon. Anal. 35, 535–540 (2013) Bakić, D., Berić, T.: On excesses of frames. Glas. Mat. Ser. III 50(2), 415–427 (2015) Balazs, P., Shamsabadi, M., Arefjamaal, A., Rahimi, A.: U-cross Gram matrices and their invertibility. J. Math. Anal. Appl. 476(2), 367–390 (2019) Bemrose, T., Casazza, P.G., Grochenig, K., Lammers, M.C., Lynch, R.G.: Weaving frames. Oper. Matrices 10(4), 1093–1116 (2016) Benedeto, J., Powell, A., Yilmaz, O.: Sigm-delta quantization and finite frames. IEEE Trans. Inform. Theory 52, 1990–2005 (2006) Boleskel, H., Hlawatsch, F., Feichtinger, H.G.: Frame theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process. 46, 3256–3268 (1998) Cazass, P.G., Kutyniok, G.: Frames of subspaces. Contempt. Math. 345, 87–114 (2004) Casazza, P.G.: The art of frame theory. Taiwan. J. Math. 4(2), 129–202 (2000) Casazza, P.G., Kutyniok, G., Li, S., Rozell, C.J.: Modeling sensor networks with fusion frames, wavelets XII. San Diego, CA. In: Proc. SPIE, vol. 6701, pp. 67011M-1-11 (2007) Christensen, O.: Frames and Bases: An Introductory Course. Birkhäuser, Boston (2008) Daubecheis, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986) Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952) Eldar, Y.C., Christensen, O.: A characterization of oblique dual frame Pairs. EURASIP J. Adv. Sig. Proc. 092674, 1–11 (2006) Gaianu, M., Onchis, D.M.: Face and Marker detection using Gabor frames on GPUs. Sig. Process. 96, 90–93 (2014) Gǎvruţa, L.: Frames for operators. Appl. Comp. Harm. Anal. Appl. 32, 139–144 (2012) James, R.: Holub, pre-frames operators, Besselian frames and near-Riesz bases in Hilbert spaces. Am. Math. Soc. 122, 779–785 (1994) Janssen, A.J.E.M.: Duality and biorthogonality for Weyl–Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995) Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, Cambridge (1999) Shamsabadi, M., Arefijamaal, A.A.: The invertibility of fusion frame multipliers. Linear Multilinear Algebra 65(5), 1062–1072 (2016) Sun, W.: G-frames and G- Riesz bases. J. Math. Anal. Appl. 322, 437–452 (2006)