On Estimating the Asymptotic Variance of Stationary Point Processes

Methodology and Computing in Applied Probability - Tập 12 Số 3 - Trang 451-471 - 2010
Heinrich, Lothar1, Prokešová, Michaela2
1Institute of Mathematics, University of Augsburg, Augsburg, Germany
2Department of Probability and Mathematical Statistics, Charles University of Prague, Praha 8, Czech Republic

Tóm tắt

We investigate a class of kernel estimators $\widehat{\sigma}^2_n$ of the asymptotic variance σ 2 of a d-dimensional stationary point process $\Psi = \sum_{i\ge 1}\delta_{X_i}$ which can be observed in a cubic sampling window $W_n = [-n,n]^d\,$ . σ 2 is defined by the asymptotic relation $Var(\Psi(W_n)) \sim \sigma^2 \,(2n)^d$ (as n →  ∞) and its existence is guaranteed whenever the corresponding reduced covariance measure $\gamma^{(2)}_{red}(\cdot)$ has finite total variation. Depending on the rate of decay (polynomially or exponentially) of the total variation of $\gamma^{(2)}_{red}(\cdot)$ outside of an expanding ball centered at the origin, we determine optimal bandwidths b n (up to a constant) minimizing the mean squared error of $\widehat{\sigma}^2_n$ . The case when $\gamma^{(2)}_{red}(\cdot)$ has bounded support is of particular interest. Further we suggest an isotropised estimator $\widetilde{\sigma}^2_n$ suitable for motion-invariant point processes and compare its properties with $\widehat{\sigma}^2_n$ . Our theoretical results are illustrated and supported by a simulation study which compares the (relative) mean squared errors of $\widehat{\sigma}^2_n$ for planar Poisson, Poisson cluster, and hard-core point processes and for various values of n b n .

Tài liệu tham khảo

citation_journal_title=Aust N Z J Stat; citation_title=Kernel estimation of the spectral density of stationary random closed sets; citation_author=S Böhm, L Heinrich, V Schmidt; citation_volume=46; citation_publication_date=2004; citation_pages=41-52; citation_doi=10.1111/j.1467-842X.2004.00310.x; citation_id=CR1 citation_title=An introduction to the theory of point processes; citation_publication_date=1988; citation_id=CR2; citation_author=DJ Daley; citation_author=D Vere-Jones; citation_publisher=Springer citation_journal_title=Math Methods Stat; citation_title=Normal approximation for some mean-value estimates of absolutely regular tessellations; citation_author=L Heinrich; citation_volume=3; citation_publication_date=1994; citation_pages=1-24; citation_id=CR3 Heinrich L (2008) Asymphotic goodness-of-fit tests for point processes based on scaled empirical K-functions (submitted) citation_journal_title=Adv Appl Probab; citation_title=Normal convergence of multidimensional shot noise and rates of this convergence; citation_author=L Heinrich, V Schmidt; citation_volume=17; citation_publication_date=1985; citation_pages=709-730; citation_doi=10.2307/1427084; citation_id=CR4 citation_journal_title=J Nonparametr Stat; citation_title=Strong convergence of kernel estimators for product densities of absolutely regular point processes; citation_author=L Heinrich, E Liebscher; citation_volume=8; citation_publication_date=1997; citation_pages=65-96; citation_doi=10.1080/10485259708832715; citation_id=CR5 citation_title=Statistical analysis and modelling of spatial point patterns; citation_publication_date=2008; citation_id=CR6; citation_author=J Illian; citation_author=A Penttinen; citation_author=H Stoyan; citation_author=D Stoyan; citation_publisher=Wiley citation_title=Central limit theorem and convergence of empirical processes of stationary point processes; citation_inbook_title=Point processes and queueing problems; citation_publication_date=1980; citation_pages=117-161; citation_id=CR7; citation_author=E Jolivet; citation_publisher=North-Holland citation_journal_title=Adv Appl Probab; citation_title=Spectral theory for random closed sets and estimating the covariance via frequence space; citation_author=K Koch, J Ohser, K Schladitz; citation_volume=35; citation_publication_date=2003; citation_pages=603-613; citation_doi=10.1239/aap/1059486820; citation_id=CR8 citation_journal_title=J Appl Probab; citation_title=Asymptotic properties of stereological estimators for stationary random sets; citation_author=S Mase; citation_volume=19; citation_publication_date=1982; citation_pages=111-126; citation_doi=10.2307/3213921; citation_id=CR9 citation_title=Statistical analysis of microstructures in material science; citation_publication_date=2000; citation_id=CR10; citation_author=J Ohser; citation_author=F Mücklich; citation_publisher=Wiley citation_journal_title=Biom J; citation_title=On the second-order and orientation analysis of planar stationary point processes; citation_author=J Ohser, D Stoyan; citation_volume=23; citation_publication_date=1981; citation_pages=523-533; citation_doi=10.1002/bimj.4710230602; citation_id=CR11 citation_title=Statistical inference for spatial processes; citation_publication_date=1988; citation_id=CR12; citation_author=BD Ripley; citation_publisher=Cambridge University Press citation_journal_title=J R Stat Soc B; citation_title=Moment estimation for statistics from marked point processes; citation_author=DN Politis, M Sherman; citation_volume=63; citation_issue=2; citation_publication_date=2001; citation_pages=261-275; citation_doi=10.1111/1467-9868.00284; citation_id=CR13 citation_journal_title=Biometrika; citation_title=Asymptotically optimal estimation for the reduced second moment measure of point processes; citation_author=M Stein; citation_volume=80; citation_publication_date=1993; citation_pages=443-449; citation_doi=10.1093/biomet/80.2.443; citation_id=CR14 citation_journal_title=Scand J Statist; citation_title=Improving ratio estimators of second order point process characeristics; citation_author=D Stoyan, H Stoyan; citation_volume=27; citation_publication_date=2000; citation_pages=641-656; citation_doi=10.1111/1467-9469.00213; citation_id=CR15 citation_title=Stochastic geometry and its applications; citation_publication_date=1995; citation_id=CR16; citation_author=D Stoyan; citation_author=WS Kendall; citation_author=J Mecke; citation_publisher=Wiley citation_title=An introduction to measure and probability; citation_publication_date=1997; citation_id=CR17; citation_author=JC Taylor; citation_publisher=Springer