On Compact Orthogonally Additive Operators

Marat Pliev1
1Southern Mathematical Institute of the Russian Academy of Science, Vladikavkaz, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

N. Abasov, ‘‘Completely additive and $$C$$-compact operators in lattice-normed spaces,’’ Ann. Funct. Anal. 11, 914–928 (2020).

N. Abasov and M. Pliev, ‘‘On extensions of some nonlinear maps in vector lattices,’’ J. Math. Anal. Appl. 455, 516–527 (2017).

C. D. Aliprantis and O. Burkinshaw, Positive Operators (Springer, Dordrecht, 2006).

W. A. Feldman, ‘‘A factorization for orthogonally additive operators on Banach lattices,’’ J. Math. Anal. Appl. 472, 238–245 (2019).

O. Fotiy, A. Gumenchuk, I. Krasikova, and M. Popov, ‘‘On sums of narrow and compact operators,’’ Positivity 24, 69–80 (2020).

M. A. Krasnosel’skij, P. P. Zabrejko, E. I. Pustil’nikov, and P. E. Sobolevskij, Integral Operators in Spaces of Summable Functions (Noordhoff, Leiden, 1976).

J. M. Mazón and S. Segura de León, ‘‘Uryson operators,’’ Rev. Roum. Math. Pures Appl. 35, 431–449 (1990).

V. Mykhaylyuk, M. Pliev, and M. Popov, ‘‘The lateral order on Riesz spaces and orthogonally additive operators,’’ Positivity (in press). https://doi.org/10.1007/s11117-020-00761-x

V. Orlov, M. Pliev, and D. Rode ‘‘Domination problem for AM-compact abstract Uryson operators,’’ Arch. Math. 107, 543–552 (2016).

M. Pliev, ‘‘On $$C$$-compact orthogonally additive operators,’’ J. Math. Anal. Appl. 494, 124594c (2021.

M. Pliev, ‘‘Domination problem for narrow orthogonally additive operators,’’ Positivity 21, 23–33 (2017).

M. Pliev and X. Fang, ‘‘Narrow orthogonally additive operators in lattice-normed spaces,’’ Sib. Math. J. 58, 134–141 (2017).

M. Pliev and M. Popov, ‘‘On extension of abstract Urysohn operators,’’ Sib. Math. J. 57, 552–557 (2016).

M. Pliev and K. Ramdane, ‘‘Order unbounded orthogonally additive operators in vector lattices,’’ Mediter. J. Math. 15, 55 (2018).

M. A. Pliev, F. Polat, and M. R. Weber, ‘‘Narrow and $$C$$-compact orthogonally additive operators in lattice-normed spaces,’’ Results Math. 74, 157 (2019).

P. Tradacete and I. Villanueva, ‘‘Valuations on Banach lattices,’’ Int. Math. Res. Not. 2020, 287–319 (2020).