On Compact Orthogonally Additive Operators
Tóm tắt
Từ khóa
Tài liệu tham khảo
N. Abasov, ‘‘Completely additive and $$C$$-compact operators in lattice-normed spaces,’’ Ann. Funct. Anal. 11, 914–928 (2020).
N. Abasov and M. Pliev, ‘‘On extensions of some nonlinear maps in vector lattices,’’ J. Math. Anal. Appl. 455, 516–527 (2017).
W. A. Feldman, ‘‘A factorization for orthogonally additive operators on Banach lattices,’’ J. Math. Anal. Appl. 472, 238–245 (2019).
O. Fotiy, A. Gumenchuk, I. Krasikova, and M. Popov, ‘‘On sums of narrow and compact operators,’’ Positivity 24, 69–80 (2020).
M. A. Krasnosel’skij, P. P. Zabrejko, E. I. Pustil’nikov, and P. E. Sobolevskij, Integral Operators in Spaces of Summable Functions (Noordhoff, Leiden, 1976).
J. M. Mazón and S. Segura de León, ‘‘Uryson operators,’’ Rev. Roum. Math. Pures Appl. 35, 431–449 (1990).
V. Mykhaylyuk, M. Pliev, and M. Popov, ‘‘The lateral order on Riesz spaces and orthogonally additive operators,’’ Positivity (in press). https://doi.org/10.1007/s11117-020-00761-x
V. Orlov, M. Pliev, and D. Rode ‘‘Domination problem for AM-compact abstract Uryson operators,’’ Arch. Math. 107, 543–552 (2016).
M. Pliev, ‘‘On $$C$$-compact orthogonally additive operators,’’ J. Math. Anal. Appl. 494, 124594c (2021.
M. Pliev, ‘‘Domination problem for narrow orthogonally additive operators,’’ Positivity 21, 23–33 (2017).
M. Pliev and X. Fang, ‘‘Narrow orthogonally additive operators in lattice-normed spaces,’’ Sib. Math. J. 58, 134–141 (2017).
M. Pliev and M. Popov, ‘‘On extension of abstract Urysohn operators,’’ Sib. Math. J. 57, 552–557 (2016).
M. Pliev and K. Ramdane, ‘‘Order unbounded orthogonally additive operators in vector lattices,’’ Mediter. J. Math. 15, 55 (2018).
M. A. Pliev, F. Polat, and M. R. Weber, ‘‘Narrow and $$C$$-compact orthogonally additive operators in lattice-normed spaces,’’ Results Math. 74, 157 (2019).