On Classical and Bayesian Reliability of Systems Using Bivariate Generalized Geometric Distribution
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kemp, C., Papageorgiou, H.: Bivariate hermite distributions. Indian J. Stat. Ser. A 44, 269–280 (1982)
Johnson, N.L., Kotz, S., Balakrishnan, N.: Discrete Multivariate Distributions, 165th edn. Wiley, New York (1997)
Lai, C.-D.: Constructions of discrete bivariate distributions. In: Advances in Distribution Theory, Order Statistics, and Inference, pp. 29–58. Springer (2006)
Basu, A.P., Dhar, S.: Bivariate geometric distribution. J. Appl. Stat. Sci. 2(1), 3–44 (1995)
Sarhan, A.M., Balakrishnan, N.: A new class of bivariate distributions and its mixture. J. Multivar. Anal. 98(7), 1508–1527 (2007)
Jamalizadeh, A., Kundu, D.: Weighted Marshall-Olkin bivariate exponential distribution. Statistics 47(5), 917–928 (2013)
Kundu, D., Gupta, A.K.: On bivariate Weibull-geometric distribution. J. Multivar. Anal. 123, 19–29 (2014)
Gómez-Déniz, E., Ghitany, M., Gupta, R.C.: A bivariate generalized geometric distribution with applications. Commun. Stat. Theory Methods 46(11), 5453–5465 (2017)
Freund, J.E.: A bivariate extension of the exponential distribution. J. Am. Stat. Assoc. 56(296), 971–977 (1961)
Marshall, A.W., Olkin, I.: A generalized bivariate exponential distribution. J. Appl. Probab. 4(2), 291–302 (1967)
Marshall, A.W., Olkin, I.: A multivariate exponential distribution. J. Am. Stat. Assoc. 62(317), 30–44 (1967)
Downton, F.: Bivariate exponential distributions in reliability theory. J. R. Stat. Soc. 32(3), 408–417 (1970)
Hawkes, A.G.: A bivariate exponential distribution with applications to reliability. J. R. Stat. Soc. 11, 129–131 (1972)
Block, H.W., Basu, A.: A continuous, bivariate exponential extension. J. Am. Stat. Assoc. 69(348), 1031–1037 (1974)
Hougaard, P.: A class of multivanate failure time distributions. Biometrika 73(3), 671–678 (1986)
Sarkar, S.K.: A continuous bivariate exponential distribution. J. Am. Stat. Assoc. 82(398), 667–675 (1987)
Arnold, B.C., Strauss, D.: Bivariate distributions with exponential conditionals. J. Am. Stat. Assoc. 83(402), 522–527 (1988)
Hanagal, D.D.: Bivariate Weibull regression model based on censored samples. Stat. Pap. 47(1), 137–147 (2006)
de Oliveira, R.P., Achcar, J.A.: Basu-Dhar’s bivariate geometric distribution in presence of censored data and covariates: some computational aspects. Electron. J. Appl. Stat. Anal. 11(1), 108–136 (2018)
Arnold, B.C.: A characterization of the exponential distribution by multivariate geometric compounding. Indian J. Stat. Ser. A 37, 164–173 (1975)
Nair, K.M., Nair, N.U.: On characterizing the bivariate exponential and geometric distributions. Ann. Inst. Stat. Math. 40(2), 267–271 (1988)
Sun, K., Basu, A.P.: A characterization of a bivariate geometric distribution. Statist. Probab. Lett. 23(4), 307–311 (1995)
Dhar, S.K., Balaji, S.: On the characterization of a bivariate geometric distribution. Commun. Stat. Theory Methods 35(5), 759–765 (2006)
Krishna, H., Pundir, P.S.: A bivariate geometric distribution with applications to reliability. Commun. Stat. Theory Methods 38(7), 1079–1093 (2009)
Li, J., Dhar, S.K.: Modeling with bivariate geometric distributions. Commun. Stat. Theory Methods 42(2), 252–266 (2013)
Davarzani, N., et al.: Bivariate lifetime geometric distribution in presence of cure fractions. J Data Sci. 13(4), 755–770 (2015)
Adams, E.S.: Bayesian analysis of linear dominance hierarchies. Anim. Behav. 69(5), 1191–1201 (2005)
Kruschke, J.: Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/Elsevier (2011)
Barry, J.: Doing Bayesian data analysis: A tutorial with R and BUGS. Eur. J. Psychol. 7(4), 778 (2011)
Carlin, B.P., Louis, T.A.: Bayes and Empirical Bayes Methods for Data Analysis. Chapman and Hall/CRC (2010)
Achcar, J.A., Santander, L.A.M.: Use of approximate Bayesian methods for the Block and Basu bivariate exponential distribution. J. Ital. Stat. Soc. 2(3), 233–250 (1993)
dos Santos, C.A., Achcar, J.A.: A Bayesian analysis for the Block and Basu bivariate exponential distribution in the presence of covariates and censored data. J. Appl. Stat. 38(10), 2213–2223 (2011)
Achcar, J., Davarzani, N., Souza, R.: Basu-Dhar bivariate geometric distribution in the presence of covariates and censored data: a bayesian approach. J. Appl. Stat. 43(9), 1636–1648 (2016)
Davarzani, N., et al.: A Bayesian analysis for the bivariate geometric distribution in the presence of covariates and censored data. J. Stat. Manag. Syst. 20(1), 1–16 (2017)
Scollnik, D.P.M.: Bayesian inference for three bivariate beta binomial models. Open Stat. Probab. J. 8(1), 27 (2017)
de Oliveira, R.P., et al.: Discrete and continuous bivariate lifetime models in presence of cure rate: a comparative study under Bayesian approach. J. Appl. Stat. 46(3), 449–467 (2019)
Najarzadegan, H., et al.: Weighted bivariate geometric distribution: simulation and estimation. Commun. Stat. Simul. Comput. (2018). https://doi.org/10.1080/03610918.2018.1520870
Abbas, N.: On examining complex systems using the q-weibull distribution in classical and bayesian paradigms. J. Stat. Theory Appl. 19(3), 368–382 (2020)
Gelfand, A.E., Smith, A.F.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85(410), 398–409 (1990)
Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat. 49(4), 327–335 (1995)
Kruschke, J.: Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. Academic Press (2014)
Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. 222(594–604), 309–368 (1922)
Aitchison, J., Ho, C.: The multivariate Poisson-log normal distribution. Biometrika 76(4), 643–653 (1989)
Karlis, D., Meligkotsidou, L.: Finite mixtures of multivariate Poisson distributions with application. J. Stat. Plan. Inference 137(6), 1942–1960 (2007)
Sarabia, J.M., Gómez-Déniz, E.: Construction of multivariate distributions: a review of some recent results. (invited article with discussion: M. del Carmen Pardo and Jorge Navarro). SORT-Statistics and Operations Research Transactions, pp. 3–36 (2008)
Bayes, T.: Bayes An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. 53, 376–418 (1763)
Garthwaite, P.H., Kadane, J.B., O’Hagan, A.: Statistical methods for eliciting probability distributions. J. Am. Stat. Assoc. 100(470), 680–701 (2005)
Fang, Y.: Asymptotic equivalence between cross-validations and Akaike information criteria in mixed-effects models. J. Data Sci. 9(1), 15–21 (2011)