On Classical and Bayesian Reliability of Systems Using Bivariate Generalized Geometric Distribution

Nasir Abbas1
1Government Graduate College, Jhang, Pakistan

Tóm tắt

AbstractThe study of system safety and reliability has always been vital for the quality and manufacturing engineers of varying fields for which generally the continuous probability distributions are proposed. Bivariate and multivariate continuous distributions are the candidates while studying more than one characteristic of the system. In this article, an attempt is made to address this issue when the reliability systems generate bivariate and correlated count datasets. The bivariate generalized geometric distribution (BGGD) is believed to serve as a potential candidate to model such types of datasets. Bayesian approach of data analysis has the potential of accommodating the uncertainty associated with the model parameters of interest using uninformative and informative priors. A real life bivariate correlated dataset is analyzed in Bayesian framework and the results are compared with those produced by the classical approach. Posterior summaries including posterior means, highest density regions, and predicted expected frequencies of the bivariate data are evaluated. Different information criteria are evaluated to compare the inferential methods under study. The entire analysis is carried out using Markov chain Monte Carlo (MCMC) set-up of data augmentation implemented through WinBUGS.

Từ khóa


Tài liệu tham khảo

Kemp, C., Papageorgiou, H.: Bivariate hermite distributions. Indian J. Stat. Ser. A 44, 269–280 (1982)

Johnson, N.L., Kotz, S., Balakrishnan, N.: Discrete Multivariate Distributions, 165th edn. Wiley, New York (1997)

Lai, C.-D.: Constructions of discrete bivariate distributions. In: Advances in Distribution Theory, Order Statistics, and Inference, pp. 29–58. Springer (2006)

Basu, A.P., Dhar, S.: Bivariate geometric distribution. J. Appl. Stat. Sci. 2(1), 3–44 (1995)

Sarhan, A.M., Balakrishnan, N.: A new class of bivariate distributions and its mixture. J. Multivar. Anal. 98(7), 1508–1527 (2007)

Jamalizadeh, A., Kundu, D.: Weighted Marshall-Olkin bivariate exponential distribution. Statistics 47(5), 917–928 (2013)

Kundu, D., Gupta, A.K.: On bivariate Weibull-geometric distribution. J. Multivar. Anal. 123, 19–29 (2014)

Sankaran, P., Kundu, D.: A bivariate Pareto model. Statistics 48(2), 241–255 (2014)

Gómez-Déniz, E., Ghitany, M., Gupta, R.C.: A bivariate generalized geometric distribution with applications. Commun. Stat. Theory Methods 46(11), 5453–5465 (2017)

Gumbel, E.J.: Bivariate exponential distributions. J. Am. Stat. Assoc. 55(292), 698–707 (1960)

Freund, J.E.: A bivariate extension of the exponential distribution. J. Am. Stat. Assoc. 56(296), 971–977 (1961)

Marshall, A.W., Olkin, I.: A generalized bivariate exponential distribution. J. Appl. Probab. 4(2), 291–302 (1967)

Marshall, A.W., Olkin, I.: A multivariate exponential distribution. J. Am. Stat. Assoc. 62(317), 30–44 (1967)

Downton, F.: Bivariate exponential distributions in reliability theory. J. R. Stat. Soc. 32(3), 408–417 (1970)

Hawkes, A.G.: A bivariate exponential distribution with applications to reliability. J. R. Stat. Soc. 11, 129–131 (1972)

Block, H.W., Basu, A.: A continuous, bivariate exponential extension. J. Am. Stat. Assoc. 69(348), 1031–1037 (1974)

Hougaard, P.: A class of multivanate failure time distributions. Biometrika 73(3), 671–678 (1986)

Sarkar, S.K.: A continuous bivariate exponential distribution. J. Am. Stat. Assoc. 82(398), 667–675 (1987)

Arnold, B.C., Strauss, D.: Bivariate distributions with exponential conditionals. J. Am. Stat. Assoc. 83(402), 522–527 (1988)

Hanagal, D.D.: Bivariate Weibull regression model based on censored samples. Stat. Pap. 47(1), 137–147 (2006)

de Oliveira, R.P., Achcar, J.A.: Basu-Dhar’s bivariate geometric distribution in presence of censored data and covariates: some computational aspects. Electron. J. Appl. Stat. Anal. 11(1), 108–136 (2018)

Arnold, B.C.: A characterization of the exponential distribution by multivariate geometric compounding. Indian J. Stat. Ser. A 37, 164–173 (1975)

Nair, K.M., Nair, N.U.: On characterizing the bivariate exponential and geometric distributions. Ann. Inst. Stat. Math. 40(2), 267–271 (1988)

Sun, K., Basu, A.P.: A characterization of a bivariate geometric distribution. Statist. Probab. Lett. 23(4), 307–311 (1995)

Dhar, S.K., Balaji, S.: On the characterization of a bivariate geometric distribution. Commun. Stat. Theory Methods 35(5), 759–765 (2006)

Krishna, H., Pundir, P.S.: A bivariate geometric distribution with applications to reliability. Commun. Stat. Theory Methods 38(7), 1079–1093 (2009)

Li, J., Dhar, S.K.: Modeling with bivariate geometric distributions. Commun. Stat. Theory Methods 42(2), 252–266 (2013)

Davarzani, N., et al.: Bivariate lifetime geometric distribution in presence of cure fractions. J Data Sci. 13(4), 755–770 (2015)

Adams, E.S.: Bayesian analysis of linear dominance hierarchies. Anim. Behav. 69(5), 1191–1201 (2005)

Foreman-Mackey, D., et al.: emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125(925), 306 (2013)

Lunn, D., et al.: The BUGS Book: A Practical Introduction to Bayesian Analysis. CRC Press (2012)

Kruschke, J.: Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press/Elsevier (2011)

Barry, J.: Doing Bayesian data analysis: A tutorial with R and BUGS. Eur. J. Psychol. 7(4), 778 (2011)

Carlin, B.P., Louis, T.A.: Bayes and Empirical Bayes Methods for Data Analysis. Chapman and Hall/CRC (2010)

Achcar, J.A., Santander, L.A.M.: Use of approximate Bayesian methods for the Block and Basu bivariate exponential distribution. J. Ital. Stat. Soc. 2(3), 233–250 (1993)

dos Santos, C.A., Achcar, J.A.: A Bayesian analysis for the Block and Basu bivariate exponential distribution in the presence of covariates and censored data. J. Appl. Stat. 38(10), 2213–2223 (2011)

Achcar, J., Davarzani, N., Souza, R.: Basu-Dhar bivariate geometric distribution in the presence of covariates and censored data: a bayesian approach. J. Appl. Stat. 43(9), 1636–1648 (2016)

Davarzani, N., et al.: A Bayesian analysis for the bivariate geometric distribution in the presence of covariates and censored data. J. Stat. Manag. Syst. 20(1), 1–16 (2017)

Scollnik, D.P.M.: Bayesian inference for three bivariate beta binomial models. Open Stat. Probab. J. 8(1), 27 (2017)

de Oliveira, R.P., et al.: Discrete and continuous bivariate lifetime models in presence of cure rate: a comparative study under Bayesian approach. J. Appl. Stat. 46(3), 449–467 (2019)

Najarzadegan, H., et al.: Weighted bivariate geometric distribution: simulation and estimation. Commun. Stat. Simul. Comput. (2018). https://doi.org/10.1080/03610918.2018.1520870

Abbas, N.: On examining complex systems using the q-weibull distribution in classical and bayesian paradigms. J. Stat. Theory Appl. 19(3), 368–382 (2020)

Gelfand, A.E., Smith, A.F.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85(410), 398–409 (1990)

Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat. 49(4), 327–335 (1995)

Kruschke, J.: Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. Academic Press (2014)

Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. 222(594–604), 309–368 (1922)

Aitchison, J., Ho, C.: The multivariate Poisson-log normal distribution. Biometrika 76(4), 643–653 (1989)

Karlis, D., Meligkotsidou, L.: Finite mixtures of multivariate Poisson distributions with application. J. Stat. Plan. Inference 137(6), 1942–1960 (2007)

Sarabia, J.M., Gómez-Déniz, E.: Construction of multivariate distributions: a review of some recent results. (invited article with discussion: M. del Carmen Pardo and Jorge Navarro). SORT-Statistics and Operations Research Transactions, pp. 3–36 (2008)

Bayes, T.: Bayes An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. 53, 376–418 (1763)

Garthwaite, P.H., Kadane, J.B., O’Hagan, A.: Statistical methods for eliciting probability distributions. J. Am. Stat. Assoc. 100(470), 680–701 (2005)

Fang, Y.: Asymptotic equivalence between cross-validations and Akaike information criteria in mixed-effects models. J. Data Sci. 9(1), 15–21 (2011)

Burnham, K.P., Anderson, D.R.: Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33(2), 261–304 (2004)