On Carleson-Type Embeddings for Bergman Spaces of Harmonic Functions

Analysis Mathematica - Tập 44 - Trang 493-499 - 2017
T. Jovanović1
1Faculty of Mathematics, University of Belgrade, Belgrade, Serbia

Tóm tắt

Given a measure μ on a bounded domain Ω ⊂ ℝn with C1 boundary, we investigate the following problem: when is a weighted harmonic Bergman space $$A_\alpha^p(\Omega)$$ continuously embedded in weighted space Lp(Ω) = Lp(μ, Ω)? We give a sufficient Carleson type condition for all α > −1 and 0 < p < ∞ which is also necessary for $$p > 1 + \frac{{\alpha + 2}}{{n - 2}}$$ .

Tài liệu tham khảo

M. Arsenovic and R. F. Shamoyan, On embeddings, traces and multipliers in harmonic function spaces, Kragujevac J. Math., 37 (2013), 45–64. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Asterisque, 77 (1980), 11–66. M. Jevtic and M. Pavlovic, Harmonic Bergman functions on the unit ball in R n, Acta Math. Hungar., 85 (1999), 81–96. S. H. Kang and J. Y. Kim, Harmonic Bergman spaces of the half-spaces and their some operators, Bull. Korean Math. Soc., 38 (2001), 773–786. H. Koo, K. Nam and H. Yi, Weighted harmonic Bergman kernel on half-spaces, J. Math. Soc. Japan, 58 (2006), 351–362. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press (Princeton, NJ, 1970). E. M. Stein, Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press (Princeton, NJ, 1993). K. Zhu, Spaces of Holomorphic Function in the Unit Ball, Springer-Verlag (Berlin–New York, 2005).