On C-totally real minimal submanifolds of the Sasakian space forms with parallel Ricci tensor

Zejun Hu1, Meng Li1, Cheng Xing1
1School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, People’s Republic of China

Tóm tắt

Cheng et al. recently (Results Math 76:144, 2021) established a complete classification of the n-dimensional C-totally real minimal submanifolds with constant sectional curvature in the $$(2n+1)$$ -dimensional Sasakian space form $$N^{2n+1}(c)$$ . In this paper, trying to extend the above result, we classify C-totally real minimal submanifolds in $$N^{2n+1}(c)$$ with parallel Ricci tensor for $$n=3,4$$ . In particular, we show that 4-dimensional C-totally real minimal Einstein submanifolds in $$N^9(c)$$ are of constant sectional curvature.

Tài liệu tham khảo

Antić, M., Li, H., Vrancken, L., Wang, X.: Affine hypersurfaces with constant sectional curvature. Pac. J. Math. 310, 275–302 (2021) Baikoussis, C., Blair, D.E., Koufogiorgos, T.: Integral submanifolds of Sasakian space forms \(M^7(k)\). Results Math. 27, 207–226 (1995) Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds, 2nd edn. Birkhäuser, Boston (2010) Blair, D.E., Carriazo, A.: The contact Whitney sphere. Note Mat. 20(2000/01), 125–133 (2002) Cheng, X., He, H., Hu, Z.: \(C\)-totally real submanifolds with constant sectional curvature in the Sasakian space forms. Results Math. 76, 144 (2021) Cheng, X., Hu, Z., Li, A.-M., Li, H.: On the isolation phenomena of Einstein manifolds-submanifolds versions. Proc. Am. Math. Soc. 146, 1731–1740 (2018) Cheng, X., Hu, Z., Moruz, M., Vrancken, L.: On product affine hyperspheres in \({\mathbb{R} }^{n+1}\). Sci. China Math. 63, 2055–2078 (2020) Cheng, X., Hu, Z., Moruz, M., Vrancken, L.: On product minimal Lagrangian submanifolds in complex space forms. J. Geom. Anal. 31, 1934–1964 (2021) Dillen, F., Vrancken, L.: \(C\)-totally real submanifolds of \({\mathbb{S} }^7(1)\) with nonnegative sectional curvature. Math. J. Okayama Univ. 31, 227–242 (1989) Ejiri, N.: Totally real minimal immersions of \(n\)-dimensional real space forms into \(n\)-dimensional complex space forms. Proc. Am. Math. Soc. 84, 243–246 (1982) Fetcu, D., Oniciuc, C.: Biharmonic integral \({\cal{C} }\)-parallel submanifolds in \(7\)-dimensional Sasakian space forms. Tohoku Math. J. 64, 195–222 (2012) Hu, Z., Li, H., Vrancken, L.: On four-dimensional Einstein affine hyperspheres. Differ. Geom. Appl. 50, 20–33 (2017) Hu, Z., Xing, C.: On the Ricci curvature of \(3\)-submanifolds in the unit sphere. Arch. Math. (Basel) 115, 727–735 (2020) Hu, Z., Xing, C.: New characterizations of the Whitney spheres and the contact Whitney spheres. Mediterr. J. Math. 19, 75 (2022) Hu, Z., Yin, J.: An optimal inequality related to characterizations of the contact Whitney spheres in Sasakian space forms. J. Geom. Anal. 30, 3373–3397 (2020) Lee J.W., Lee C.W., Vîlcu G.-E.: Classification of Casorati ideal Legendrian submanifolds in Sasakian space forms. J. Geom. Phys. 155, 103768 (2020) [II, 171, 104410 (2022)] Li, H., Wang, X.: Calabi product Lagrangian immersions in complex projective space and complex hyperbolic space. Results Math. 59, 453–470 (2011) Luo, Y.: Contact stationary Legendrian surfaces in \({\mathbb{S} }^5\). Pac. J. Math. 293, 101–120 (2018) Luo, Y., Sun, L.: Complete Willmore Legendrian surfaces in \({\mathbb{S} }^5\) are minimal Legendrian surfaces. Ann. Global Anal. Geom. 58, 177–189 (2020) Mihai, I.: Ideal \(C\)-totally real submanifolds in Sasakian space forms. Ann. Mat. Pura Appl. 182, 345–355 (2003) O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983) Pitiş, G.: Integral submanifolds with closed conformal vector field in Sasakian manifolds. N. Y. J. Math. 11, 157–170 (2005) Reckziegel, H.: A correspondence between horizontal submanifolds of Sasakian manifolds and totally real submanifolds of Kählerian manifolds. Topics in Differential Geometry, vols. I, II (Debrecen, 1984), pp. 1063–1081. Colloq. Math. Soc., North-Holland (1988) Sasahara, T.: A class of biminimal Legendrian submanifolds in Sasakian space forms. Math. Nachr. 287, 79–90 (2014) Sasahara, T.: Classification of biharmonic \({\cal{C} }\)-parallel Legendrian submanifolds in \(7\)-dimensional Sasakian space forms. Tohoku Math. J. 71, 157–169 (2019) Szabó, Z.I.: Structure theorems on Riemannian spaces satisfying \(R(X,Y)\cdot R=0\). I. The local version. J. Differ. Geom. 17, 531–582 (1982) Tanno, S.: Sasakian manifolds with constant \(\phi \)-holomorphic sectional curvature. Tohoku Math. J. 21, 501–507 (1969) Verheyen, P., Verstraelen, L.: Conformally flat \(C\)-totally real submanifolds of Sasakian space forms. Geom. Dedicata 12, 163–169 (1982) Verstraelen, L., Vrancken, L.: Pinching theorems for \(C\)-totally real submanifolds of Sasakian space forms. J. Geom. 33, 172–184 (1988) Yamaguchi, S., Kon, M., Ikawa, T.: \(C\)-totally real submanifolds. J. Differ. Geom. 11, 59–64 (1976)