On Bonisoli’s theorem and the block codes of Steiner triple systems

Dieter Jungnickel1, Vladimir D. Tonchev2
1Mathematical Institute, University of Augsburg, Augsburg, Germany
2Department of Mathematical Sciences, Michigan Technological University, Houghton, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Assmus Jr. E.F.: On $$2$$ 2 -ranks of Steiner triple systems. Electron. J. Comb. 2, R9 (1995).

Assmus Jr. E.F., Key J.D.: Designs and their codes. Cambridge University Press, Cambridge (1992).

Assmus Jr. E.F., Mattson Jr. H.F.: Error-correcting codes: an axiomatic approach. Inform. Control 6, 315–330 (1963).

Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999).

Bonisoli A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Comb. 18, 181–186 (1983).

Borges J., Rifà J., Zinoviev V.A.: On $$q$$ q -ary linear completely regular codes with $$\rho = 2$$ ρ = 2 and antipodal dual. Adv. Math. Commun. 4, 567–578 (2010).

Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986).

Coupland J.: On the construction of certain Steiner systems. Ph. D. thesis, University College of Wales (1975).

De Clerck F., Durante N.: Constructions and characterizations of classical sets in $$PG(n,q)$$ P G ( n , q ) . In: Current Research Topics in Galois Geometry, pp. 1–33. Nova Science Publishers, New York (2012).

Delsarte P.: An algebraic approach to the association schemes of coding theory. Ph. D. thesis, Philips Research Laboratories (1973).

Doyen J.: Sur la structure de certains systèmes triples de Steiner. Math. Z. 111, 289–300 (1969).

Doyen J., Hubaut X., Vandensavel M.: Ranks of incidence matrices of Steiner triple systems. Math. Z. 163, 251–259 (1978).

Hall Jr. M.: Combinatorial Theory, 2nd edn. Wiley, New York (1986).

Hamada N.: On the $$p$$ p -rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes. Hiroshima Math. J. 3, 153–226 (1973).

Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

Jungnickel D.: Recent results on designs with classical parameters. J. Geom. 101, 137–155 (2011).

Jungnickel D.: Characterizing geometric designs, II. J. Comb. Theory Ser. A 118, 623–633 (2011).

Jungnickel D., van Lint J.H. (Eds.): Designs and Codes—A memorial tribute to Ed Assmus. Des. Codes Cryptogr. 17 and 18 (1999).

MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, New York (1977).

Teirlinck L.: Combinatorial structures. Ph. D. Thesis, University of Brussels, Brussels (1976).

Teirlinck L.: On projective and affine hyperplanes. J. Comb. Theory Ser. A 28, 290–306 (1980).

Tonchev V.D.: Linear perfect codes and a characterization of the classical designs. Des. Codes Cryptogr. 17, 121–128 (1999).

Tonchev V.D.: A mass formula for Steiner triple systems STS $$(2^{n}-1)$$ ( 2 n - 1 ) of 2-rank $$2^n -n$$ 2 n - n . J. Comb. Theory Ser. A 95, 197–208 (2001).

Tonchev V.D., Weishaar R.S.: Steiner triple systems of order 15 and their codes. J. Stat. Plan. Inference 58, 207–216 (1997).

van Lint J.H.: Introduction to Coding Theory, 3rd edn. Springer, New York (1999).

Ward H.N.: An introduction to divisible codes. Des. Codes Cryptogr. 17, 73–79 (1999).