Về hành vi của hợp kim nhớ hình phân loại chức năng dưới tác động của sự kết hợp nhiệt-cơ học

Acta Mechanica Solida Sinica - Tập 29 - Trang 46-58 - 2016
Bingfei Liu1, Pengcheng Ni2, Wei Zhang1
1Airport College, Civil Aviation University of China, Tianjin, China
2Sino-European Institute of Aviation Engineering , Civil Aviation University of China , Tianjin , China

Tóm tắt

Một giải pháp phân tích được đạt được cho các hợp kim nhớ hình phân loại chức năng (FG-SMA) chịu tác động của sự kết hợp nhiệt-cơ học. Mô đun Young và hệ số giãn nở nhiệt của vật liệu được giả định thay đổi theo các dạng hàm lũy thừa khác nhau qua chiều dày, với tỷ lệ Poisson được giữ hằng số. Một mô hình cấu tạo SMA được kết hợp với các kỹ thuật trung bình của vật liệu composite để xác định các thuộc tính cơ học của hợp kim FG-SMA. Các bước chuyển pha khác nhau và phân bố ứng suất tương ứng qua chiều dày được đưa ra. Các kết quả cho thấy rằng ứng suất trung bình giảm khi các quá trình chuyển pha diễn ra.

Từ khóa

#Hợp kim nhớ hình #phân loại chức năng #kết hợp nhiệt-cơ học #mô đun Young #giãn nở nhiệt

Tài liệu tham khảo

Aghababaei, R. and Joshi, S.P., Micromechanics of crystallographic size-effects in metal matrix composites induced by thermo-mechanical loading. International Journal of Plasticity, 2013, 42: 65–82. Eisenlohr, P., Diehl, M., Lebensohn, R.A. and Roters, F., A spectral method solution to crystal elasto-viscoplasticity at finite strains. International Journal of Plasticity, 2013, 46: 37–53. Chen, Y.L. and Ghosh, S., Micromechanical analysis of strain rate-dependent deformation and failure in composite microstructures under dynamic loading conditions. International Journal of Plasticity, 2012, 32–33: 218–247. Liu, B.F., Dui, G.S. and Zhu, Y.P., A constitutive model for porous shape memory alloys considering the effect of hydrostatic stress. CMES-Computer Modeling in Engineering & Science, 2011, 78(4): 247–275. Shabana, Y.M. and Noda, N., Thermo-elasto-plastic stresses in functionally graded materials subjected to thermal loading taking residual stresses of the fabrication process into consideration. Composites: Part B, 2001, 32: 111–121. Shao, Z.S. and Wang, T.J., Three-dimensional solutions for the stress fields in functionally graded cylindrical panel with finite length and subjected to thermal mechanical loads. International Journal of Solids and Structures, 2006, 43: 3856–3874. Wang, J.P., Chen, G. and Zhai, P.C., Creep property of functionally graded materials. Materials Science Forum, 2005, 492–493: 441–446. Yin, H.M., Paulino, G.H., Buttlar, W.G. and Sun, L.Z., Effective thermal conductivity of two-phase functionally graded particulate composites. Journal of Applied Physics, 2005, 98: 063704. Chen, B. and Tong, L., Sensitivity analysis of heat conduction for functionally graded materials. Material Design, 2004, 25: 663–672. Guler, M.A. and Erdogan, F., Contact mechanics of graded coatings. International Journal of Solids and Structures, 2004 41: 3865–3889. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G., Functionally Graded Materials: Design, Processing and Applications. Dordrecht: KluwerAcademic Publishers, 1999. Benafan, O., Noebe, R.D., Padula II, S.A., Brown, D.W., Vogel, S. and Vaidyanathan, R., Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution. International Journal of Plasticity, 2014, 56: 99–118. Yu, C., Kang, G.Z. and Kan, Q.H., Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation. International Journal of Plasticity, 2014, 54: 132–162. Yu, C., Kang, G.Z., Kan, Q.H. and Song, D., A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys. International Journal of Plasticity, 2013, 44: 161–191. Lagoudas, D.C., Hartl, D., Chemisky, Y., Machado, L. and Popov, P., Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. International Journal of Plasticity, 2012, 32–33: 155–183. Morin, C., Moumni, Z. and Zaki, W., Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling. International Journal of Plasticity, 2011, 27(12): 1959–1980. Liu, B.F., Dui, G.S. and Yang, S.Y., On the transformation behavior of functionally graded SMA composites subjected to thermal loading. European Journal of Mechanics A—Solids, 2013, 40: 39–147. Miyazaki, E. and Watanabe, Y., Development of shape memory alloy fiber reinforced smart FGMs. Materials Science Forum, 2003, 423–425: 107–112. Lester, B.T., Chenisky, Y. and Lagoudas, D.C., Transformation characteristics of shape memory alloy composites. Smart Materials & Structures, 2012, 20: 1–13. Zheng, B., Xu, J. and Qi, M., Preparation of graded DLC film on TiNi SMA by plasma enhanced deposition and behavior of corrosion-resistance. Journal of Functional Materials, 2007, 38(1): 115–118. Mahmud, A.S., Liu, Y.N. and Nam, T.H., Gradient anneal of functionally graded NiTi. Smart Materials & Structures, 2008, 17: 1–5. Qidwai, M.A., Entchrv, P.B., Lagoudas, D.C. and DeGiorgi, V.G. Modeling of the thermomechanical behavior of porous shape memory alloys. International Journal of Solids and Structures, 2001, 38: 8653–8671. Birnbaum, A.J. Satoh, G. and Yao, Y.L. Functionally grading the shape memory response in NiTi films. Journal of Applied Physics, 2009, 106(4): 043504-043504-8. Zhang, Y.P., Zhang, X.P. and Zhong, Z.Y., Fabrication, transformation and superelasticity behavior of NiTi memory alloy with large pore-size and gradient porosity. Aata Metallurgica Sinica, 2007, 43(11): 1221–1227. Fu, Y.L., Du, H.J. and Zhang, S., Functionally graded TiN/TiNi shape memory alloy films. Materials Letters, 2003, 57: 2995–2999. Berrabah, H.M., Mechab, I., Tounsi, A., Benyoucef, S., Krour, B., Fekrar, A. and Adda Bedia, E.A., Electro-elastic stresses in composite active beams with functionally graded layer. Computational Materials Science, 2010, 48: 366–371. Zhong, Z. and Shang, E.T., Three dimensional exact analysis of a simply supported functionally gradient plate. International Journal of Solids and Structures, 2003, 40: 5335–5352. Pitakthapanaphong, S. and Busso, E.P., Self-consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients. Journal of the Mechanics and Physics of Solids, 2002, 50: 695–716. Birman, V., Review of mechanics of shape memory alloy structures. Applied Mechanics Reviews, 1997, 50: 629–645. Xue, L.J., Dui, G.S. and Liu, B.F., Theoretical analysis of functionally graded shape memory alloy beam subjected to pure bending. Journal of Mechanical Engineering, 2012, 48(22): 40–45 (in Chinese). Zhao, Y., Taya, M., Kang, Y.S. and Kawasaki, A., Compression behavior of porous Ni-Ti shape memory alloy. Acta Materialia, 2005, 53: 337–343. Boyd, J.G. and Lagoudas, D.C., A thermodynamic constitutive model for the shape memory alloy materials. Part I. the monolithic shape memory alloy. International Journal of Plasticity, 1996, 12: 805–842. Qidwai, M.A. and Lagoudas, D.C., On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material. International Journal of Plasticity, 2000, 16: 1309–1343. Sepiani, H., Ebrahimi, F. and Karimipour, H., A mathematical model for smart functionally graded beam integrated with shape memory alloy actuators. Journal of Mechanical Science and Technology, 2009, 23: 3179–3190.