On "Arnold's theorem" on the stability of the solar system

Discrete and Continuous Dynamical Systems - Tập 33 Số 8 - Trang 3555-3565 - 2013
Jacques Féjoz1,2
1CEntre de REcherches en MAthématiques de la DEcision
2Institut de Mécanique Céleste et de Calcul des Ephémérides

Tóm tắt

Từ khóa


Tài liệu tham khảo

K. Abdullah, 2001, <em>On a strange resonance noticed by M. Herman</em>,, Regul. Chaotic Dyn., 6, 421, 10.1070/RD2001v006n04ABEH000186

V. I. Arnold, 1963, <em>Small denominators and problems of stability of motion in classical and celestial mechanics</em>,, Uspehi Mat. Nauk, 18, 91

V. I. Arnold, 2006, "Mathematical Aspects Of Classical and Celestial Mechanics," Translated from the Russian original by E. Khukhro, Third edition, Encyclopaedia of Mathematical Sciences, <strong>3</strong>,, Springer-Verlag

A. Celletti, 2006, <em>KAM stability for a three-body problem of the solar system</em>,, Z. Angew. Math. Phys., 57, 33, 10.1007/s00033-005-0002-0

A. Celletti, 2007, <em>KAM stability and celestial mechanics</em>,, Mem. Amer. Math. Soc., 187

A. Chenciner, 1989, <em>Intégration du problème de Kepler par la méthode de Hamilton-Jacobi</em>,, Technical report

L. Chierchia, 2010, <em>Properly-degenerate KAM theory (following V. I. Arnold)</em>,, Discrete Contin. Dyn. Syst. Ser. S, 3, 545, 10.3934/dcdss.2010.3.545

L. Chierchia, 2011, <em>Planetary Birkhoff normal forms</em>,, J. Mod. Dyn., 5, 623, 10.3934/jmd.2011.5.623

L. Chierchia, 2011, <em>The planetary $N$-body problem: Symplectic foliation, reductions and invariant tori</em>,, Invent. Math., 186, 1, 10.1007/s00222-011-0313-z

J. Féjoz, 2004, <em>Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman)</em>,, Ergodic Theory Dynam. Systems, 24, 1521, 10.1017/S0143385704000410

J. Féjoz, 2011, <em>Diffusion along mean motion resonance in the restricted planar three-body problem</em>,, preprint

J. Galante, 2011, <em>Destruction of invariant curves in the restricted circular planar three-body problem by using comparison of action</em>,, Duke Math. J., 159, 275, 10.1215/00127094-1415878

M. Hénon, 1966, <em>Exploration numérique du problème restreint IV. masses égales, orbites non périodiques</em>,, Bulletin Astronomique, 3, 49

A. N. Kolmogorov, 1954, <em>On the conservation of conditionally periodic motions for a small change in Hamilton's function</em>,, Dokl. Akad. Nauk SSSR (N.S.), 98, 527

J. Laskar, 1990, <em>The chaotic motion of the solar system. a numerical estimate of the size of the chaotic zones</em>,, Icarus, 88, 266, 10.1016/0019-1035(90)90084-M

J. Laskar, 2010, <em>Le système solaire est-il stable?</em>,, in, XIV, 221

J. Laskar, 1995, <em>Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian</em>,, Celestial Mech. Dynam. Astronom., 62, 193, 10.1007/BF00692088

M. L. Lidov, 1976, <em>Non-restricted double-averaged three body problem in Hill's case</em>,, Celestial Mech., 13, 471, 10.1007/BF01229100

U. Locatelli, 2007, <em>Invariant tori in the Sun-Jupiter-Saturn system</em>,, Discrete Contin. Dyn. Syst. Ser. B, 7, 377, 10.3934/dcdsb.2007.7.377

F. Malige, 2002, <em>Partial reduction in the n-body planetary problem using the angular momentum integral</em>,, Celestial Mechanics and Dynamical Astronomy, 84, 283, 10.1023/A:1020392219443

R. Moeckel, 1988, <em>Some qualitative features of the three-body problem</em>,, in, 81, 1, 10.1090/conm/081/986254

A. Moltchanov, 1968, <em>The resonant structure of the solar system</em>,, Icarus, 8, 203, 10.1016/0019-1035(68)90074-2

J. Moser, 1973, "Stable and Random Motions in Dynamical Systems,", With special emphasis on celestial mechanics

J. Moser, 2005, "Notes on Dynamical Systems," Courant Lecture Notes in Mathematics, <strong>12</strong>,, New York University

N. N. Nehorošev, 1979, <em>An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. II</em>,, Trudy Sem. Petrovsk., 5, 5

A. Neishtadt, 2003, <em>On averaging in two-frequency systems with small Hamiltonian and much smaller non-Hamiltonian perturbations</em>,, Dedicated to V. I. Arnold on the occasion of his 65th birthday, 3, 1039

A. Neishtadt, 2008, <em>Averaging method and adiabatic invariants</em>,, in, 53, 10.1007/978-1-4020-6964-2_3

L. Niederman, 1996, <em>Stability over exponentially long times in the planetary problem</em>,, Nonlinearity, 9, 1703, 10.1088/0951-7715/9/6/017

G. Pinzari, 2009, "On the Kolmogorov Set for Many-Body Problems,", Ph.D thesis

H. Poincaré, 1892, "Les Méthodes Nouvelles de la Mécanique Céleste. Tome I, Solutions Périodiques. Non-Existence des Intégrales Uniformes. Solutions Asymptotiques,", Librairie Scientifique et Technique Albert Blanchard

H. Poincaré, 1905, "Leçons de Mécanique Céleste,", Gauthier-Villars

A. S. Pyartli, 1969, <em>Diophantine approximations of submanifolds of a Euclidean space</em>,, Funkcional. Anal. i Priložen., 3, 59

P. Robutel, 1995, <em>Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions</em>,, Celestial Mech. Dynam. Astronom., 62, 219, 10.1007/BF00692089

C. Simó, 2000, <em>Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem</em>,, Phys. D, 140, 1, 10.1016/S0167-2789(99)00211-0

E. L. Stiefel, 1971, "Linear and Regular Celestial Mechanics. Perturbed Two-Body Motion, Numerical Methods, Canonical Theory,", Die Grundlehren der mathematischen Wissenschaften

F. Tisserand, 1896, "Traité de Mécanique Céleste,", Gauthier-Villars