On Arkhipov’s and Enright’s functors

Oleksandr Khomenko1, Volodymyr Mazorchuk2
1Mathematisches Institut der Universität Freiburg, Freiburg im Breisgau, Germany
2Department of Mathematics, Uppsala University, Uppsala, Sweden

Tóm tắt

We give a description of Arkhipov’s and (Joseph’s and Deodhar-Mathieu’s versions of) Enright’s endofunctors on the category associated with a fixed triangular decomposition of a complex finite-dimensional semi-simple Lie algebra, in terms of (co)approximation functors with respect to suitably chosen injective (resp. projective) modules. We establish some new connections between these functors, for example we show that Arkhipov’s and Joseph’s functors are adjoint to each other. We also give several proofs of braid relations for Arkhipov’s and Enright’s functors.

Từ khóa


Tài liệu tham khảo

Andersen, H.H., Lauritzen, N.: Twisted Verma modules. In: Studies in Memory of Issai Schur, Vol. 210, Progress in Math., Birkhäuser, Basel, 2002, pp. 1–26

Andersen, H.H., Stroppel, C.: Twisting functors on Represent. Theory 7, 681–699 (2003)

Arkhipov, S.: Semi-infinite cohomology of associative algebras and bar duality. Internat. Math. Res. Notices 17, 833–863 (1997)

Arkhipov, S.: Algebraic construction of contragradient quasi-Verma modules in positive characteristics. Preprint MPI 2001-34, Max-Planck Institute für Mathematik, 2001

Auslander, M.: Representation theory of Artin algebras I. Commun. Alg. 1, 177–268 (1974)

Auslander, M., Reiten, I.: Applications of contravariantly finite subcategories. Adv. Math. 86, 111–152 (1991)

Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: A certain category of -modules. (Russian) Funkcional. Anal. I Prilozen. 10 (2), 1–8 (1976)

Bernstein, J.N., Gelfand, S.I.: Tensor products of finite- and infinite-dimensional representations of semi-simple Lie algebras. Compositio Math. 41, 245–285 (1980)

Bouaziz, A.: Sur les représentations des algèbres de Lie semi-simples construites par T. Enright. In: Non-commutative harmonic analysis and Lie groups. Vol. 880, Springer LN Mathematics, 1981, pp. 57–68

Deodhar, V.V.: On a construction of representations and a problem of Enright. Invent. Math. 57, 101–118 (1980)

Enright, T.J.: On the fundamental series of a real semisimple Lie algebra: their irreducibility, resolutions and multiplicity formulae. Ann. Math. 110, 1–82 (1979)

Futorny, V., König, S., Mazorchuk, V.: A combinatorial description of blocks in associated with -induction. J. Algebra 231 (1), 86–103 (2000)

Jantzen, J.C.: Einhüllende Algebren halbeinfacher Lie-Algebren. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 3, Springer-Verlag, Berlin-New York, 1983

Joseph, A.: The Enright functor on the Bernstein-Gelfand-Gelfand category . Invent. Math. 67 (3), 423–445 (1982)

Joseph, A.: Completion functors in the category. Noncommutative harmonic analysis and Lie groups (Marseille, 1982), Lecture Notes in Math., 1020, Springer, Berlin, 1983, pp. 80–106

A. Joseph, Quantum groups and their primitive ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 29, Springer-Verlag, Berlin, 1995

König, S., Mazorchuk, N.: Enright’s completions and injectively copresented modules. Trans. Am. Math. Soc. 354 (7), 2725–2743 (2002)

Mathieu, O.: Classification of irreducible weight modules. Ann. Inst. Fourier (Grenoble) 50, 537–592 (2000)

Mazorchuk, V., Stroppel, C.: On functors associated to a simple root, Preprint 2004:15, Uppsala University, Uppsala, Sweden

Rocha-Caridi, A., Wallach, N.R.: Projective modules over graded Lie algebras. I. Math. Z. 180 (2), 151–177 (1982)

Soergel, W.: Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren. Represent. Theory 1, 115–132 (1997)

Soergel, W.: Kategorie , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Am. Math. Soc. 3 (2), 421–445 (1990)