On Approximation of Continuous Functions by Entire Functions on Subsets of the Real Line

Springer Science and Business Media LLC - Tập 32 - Trang 91-130 - 2009
V. V. Andrievskii1
1Department of Mathematical Sciences, Kent State University, Kent, USA

Tóm tắt

We generalize the classical Bernstein theorem concerning the constructive description of classes of functions uniformly continuous on the real line. Approximation of continuous bounded functions by entire functions of exponential type on unbounded closed proper subsets of the real line is studied.

Tài liệu tham khảo

Achieser, N.I.: Theory of Approximation. Dover, New York (1992) Ahlfors, L.V.: Conformal Invariants, Topics in Geometric Function Theory. McGraw-Hill, New York (1973) Andrievskii, V.V.: The geometric structure of regions, and direct theorems of the constructive theory of functions. Math. USSR-Sb. 54, 39–56 (1986) Andrievskii, V.V.: Metric properties of Riemann’s mapping function for the region supplemented to continuum without external zero angles. Sov. J. Contemp. Math. Anal., Arm. Acad. Sci. 24, 57–68 (1989) Andrievskii, V.V.: On Belyi’s lemma. East J. Approx. 9, 111–115 (2003) Andrievskii, V.V.: Positive harmonic functions on Denjoy domains in the complex plane. J. Anal. Math. 104, 83–124 (2008) Andrievskii, V.V., Belyi, V.I., Dzjadyk, V.K.: Conformal Invariants in Constructive Theory of Functions of Complex Variable. World Federation, Atlanta (1995) Brudnyi, Yu.A.: Approximation by integral functions on the exterior of a segment and semiaxis. Dokl. Akad. Nauk SSSR 124, 739–742 (1959) (Russian) Ditzian, Z., Totik, V.: Moduli of Smoothness. Springer, New York (1987) Dyn’kin, E.M.: On the uniform approximation of functions in Jordan domains. Sib. Mat. Z. 18, 775–786 (1977) (Russian) Dzjadyk, V.K.: Introduction to the Theory of Uniform Approximation of Functions by Polynomials. Nauka, Moskow (1977) (Russian) Garnett, J.B., Marshall, D.E.: Harmonic Measure. Cambridge University Press, Cambridge (2005) Jenkins, J.A., Oikawa, K.: On results of Ahlfors and Hayman. Ill. J. Math. 15, 664–671 (1971) Koosis, P.: The Logarithmic Integral, I. Cambridge University Press, Cambridge (1988) Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane, 2nd edn. Springer, New York (1973) Levin, B.Y.: Majorants in classes of subharmonic functions, I. Teor. Funkc. Funkc. Anal. Ih Priloz. 51, 3–17 (1989) (Russian) Levin, B.Y.: Majorants in classes of subharmonic functions, III. Teor. Funkc. Funkc. Anal. Ih Priloz. 52, 3–33 (1989) (Russian) Levin, B.Y.: Completeness of systems of functions, quasianalyticity and subharmonic majorants. J. Sov. Math. 63, 171–201 (1993) Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975) Shirokov, N.A.: Approximation by entire functions on an infinite system of closed intervals. Am. Math. Soc. Transl. 209, 183–190 (2003) Shirokov, N.A.: Inverse approximation theorem on an infinite union of segments. J. Math. Sci. 124, 4935–4939 (2004) Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970) Tamrazov, P.M.: Smoothnesses and Polynomial Approximations. Naukova Dumka, Kiev (1975) (Russian) Timan, A.F.: Theory of Approximation of Functions of a Real Variable. Dover, New York (1994)